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Abstract

The amount of information contained in a single
hyperspectral image is overwhelming for the human op-
erator. Asaresult, assessing the spatial and spectral vari-
ability of ahyperspectral imageisvery difficult. Theexist-
ing techniques mainly rely on different preprocessing al-
gorithms that reduce the high-dimensionality of the
hyperspectral datadown to afew imagesthat can bevisu-
alized using traditional RGB or RGBI combinations. The
proposed auto-correlogram approach provides a simple
framework for reducing a hyperspectral image cubeto a
singlegrayscaleimagethat is easy to interpret and screen
for spectral anomalies.

Introduction

The recent advances in hyperspectral data collec-
tion platforms pose some important questions about the
strategiesbeing used for initial dataanalysisand interpre-
tation. There is no doubt that computer-based analysis
proceduresplay animportant rolein processing such highly
dimensional data as hyperspectral imagery. The amount
of information contained in asingle hyperspectral image
like AVIRISisbeyond human abilitiesto understand, vi-
sualize, and comprehend. The problem is not just the
amount of information but itsextreme high-dimensional -
ity and what is more important — high correlation be-
tween bands. Nevertheless, the human involvement in
hyperspectral imageanalysisistill very high. Theimpor-
tant decisions are still being made by a human operator
concerninginitial dataquality assessment, dataprocessing
strategy, algorithmsto apply, and featuresto extract. We
are still far away from the moment when computer algo-
rithms will be able to make those decisions in the broad
range of applications. With the expected launch of
OrbView-4, the first space-based hyperspectral imaging
platform, the amount of available hyperspectral informa-
tionisgoingto explode. Thereisadefiniteneed for smple

and efficient approachesto visualize hyperspectral datain
“human perceptible” waysthat will help an operator un-
ambiguoudy assessthe spatia-gpectral variability of ascene.
Theexisting common approach usually involves applying
a dimensiona reduction scheme such as the Minimum
Noise Fraction (MNF) transformation and displaying the
most informative componentsasan RGB or RGBI image.
The resulting representation of the hyperspectral image
cube is colorful, but not easy to interpret. The color as-
signment varies from scene to scene and depends on a
number of factors such as spectral properties of theground
features and their coverage in the image area, amount of
noise, etc. In most cases this kind of visualization tech-
nique does not give a quantitative representation of the
sceneand servesmerely asanindicator of spatial variabil-
ity. Another popular approach isaperspective 3D visua-
ization of the image cube. The cube cell values are usu-
ally color-mapped to enhance the inter-band differences.
Thisvisualization method serves primarily as adata pre-
sentation. The visualization method that we are looking
for should provide a single image-like representation of
the whole hyperspectral datacube, allow quantitativein-
terpretation of theimagery, be scene-independent, and al-
low adirect comparison of thedifferentimages. What we
are looking for is avisualization algorithm that will pro-
vide a human operator a simple way to assess the spec-
tral-spatial (SS) variability of theimage. Visualization of
thiskind of variability providesan efficient way to quickly
screen input imagery for the presence of local anomalies
and objects of interest and to estimate the quality and
potential value of the data. The visualization algorithm
must produce results that might be interpreted by a non-
expert and unambiguously map the spectral property of
individual pixelsto asingle value or acolor triplet. We
can loosely define the spectral-spatial variability of a
hyperspectral image as a 2D rectangular array of values
that assign aspectral variability factor to the every cell on
the image. The spectral variability factor is some arbi-
trary metric that reflectsthe differencein spectral proper-
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ties(some sort of “distance”) between agiven hyperspectral
image cell and some subset of itsneighbors. Thereareno
real limitationsfor selecting adistance measureaslong as
it provides meaningful interpretation of the results, but it
might be desirableto sel ect measuresthat satisfy triangu-
larinequality.

Approach

The proposed a gorithm creates an auto-correlogram,
animage-like representation of the spectral proximity be-
tween each cell in the image and its neighbors within a
user-defined distance. Thekey part of constructing ause-
ful auto-correlogram is the selection of the appropriate
metric for computing the spectral “ distance” or similarity
between hyperspectral imagecells. Theauto-correlogram
approach is similar to the traditiona spectral similarity
mapping methods, such as spectral angle mapper (SAM)
or matched filtering (MF) agorithms, but instead of com-
puting the spectral similarity between each cell and some
target material, it calculates the similarity between each
cell and some subset of its neighbors. Thereisno single
universal metric that issuperior to othersfor defining spec-
tral smilarity. The spectral curve might be viewed and
analyzed from many different viewpoints, so the similar-
ity measure should be chosen with respect to the specific
application. A variety of algorithms have been used to
define the similarity between spectral curves. They al
might beroughly classified into several mgjor groups. sta-
tistical metrics, vector geometry, and information theory
based.

Probably the most popular geometrical method is
the spectral angle mapper, which treats spectraasvectors
in n-dimensional space. The spectral angle mapper algo-
rithm uses the angle between two vectors as a spectral
similarity metric. The advantage of this approach is its
relativeinsensitivity to variation in the sceneillumination
and albedo effects. Smaller anglesrepresent ahigher de-
gree of match between spectral curves.

The RMS distance between two spectrais an ex-
ample of the popular statistical distance metric (Clark et
al, 1990):

RMS=[S (R - PYJ*2/ N )

where N is the number of bands, and R and P, are cell

values of the spectra being compared in thebandi. The
RM Sdistanceisagood statistical indicator of the overall
spectral similarity. However, it is more sensitive to al-
bedo variationsthan to changesin the spectral curve shape.
Another vector-based measure, the vector dot product,
suffersfrom the same problem.

The Hamming distance isacommon distance met-
ric that is used for computing spectral similarity. This
metric is based on binary encoding of the spectrainto 1-
or 2-bit elements that represent the cell value of agiven
band with relation to its average val ue and spectral slope.
The binary encoding methods have their rootsin digital
communications and information theory and are very
computationally efficient. They have been successfully
used in mineral mapping applications (Kruse et al 1993).

The constrained energy minimization (CEM) tech-
nigue, also known as matched filtering, isan example of a
more complicated statistical measurethat exploitsnot only
the original spectra, but also statistical information about
a hyperspectral image cube in the form of the sample
correlation matrix. The CEM optimal linear operator
(Harsanyi, 1993) isgiven by:

W = Rid (d'Rd)? 2
where Rt istheinverse of the sample correlation matrix
of the observation pixel vectorsand disatarget signature.
Thelinear operator W isapplied to every cell intheimage
and yields an abundance map. The higher abundance
values indicate a closer spectral match. This technique
might be easily adopted as a distance metric for the auto-
correlogram approach, but it will require some additional
computation of the optimal linear operator W for every
cell intheimage. Equation (2) containsatarget spectrum
that in the auto-correl ogram case is the spectrum of the
cell that is being processed. A further extension of the
CEM operator is a locally adaptive constrained energy
minimization algorithm (LA-CEM) that usesalocal esti-
mation of the sample correlation matrix in some floating
window around the current cell. This approach requires
even more computations, but in some cases it produces
better resultsthan atraditional CEM operator.

All of the similarity measures mentioned above use
aspectral curveinitsorigina form. In some casesthis
characteristic becomesarea shortcoming, becauseit makes
most of the algorithms more sensitiveto variationsinthe
overall energy of the spectral curve than to its shape.
Spectral curve shape analysisisdefinitely under-exploited
in the field of spectral similarity mapping. As a partia
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remedy, most of the algorithms above can be changed
easily to use not an original spectral curve, but a trans-
formed version that enhancestheinfluence of the curve's
shape on the output of the algorithm. The simplest ap-
proach isto use derivatives of the spectra (Woods, 1984).
It has been shown that using the first derivative of the
signal can significantly enhance the output of the CEM
operator (Frolov and Smith, 1999). The abundance map
produced containsless noise and has better contrast char-
acteristics.

We also have to mention the importance of image
calibration for mapping aspectral smilarity. Itisdesirable
to apply an appropriate calibrationto theimagein order to
standardize the signal amplitude in the different bands.
The auto-correlogram approach is also sensitive to the
image calibration, because that might result in unequal
weighting of the bandsin the output similarity map. How-
ever, the selection of the particular image calibration algo-
rithmisnot asimportant asfor traditional spectral match-
ing applications and might be considered more asastatis-
tical normalization procedure.

So far we have been discussing spectral similarity
measures and ignoring another important aspect of the
auto-correlogram approach. The spatial aspect of the SS-
variability isprobably equally significant for achieving good
results. We have defined an auto-correlogram operator
as ameasure of the spectral similarity between animage
cell and some set of its neighbors. There is an obvious
analogy with conventiona spatia imagefiltering techniques
that use amoving window for computing afilter response.
The auto-correlogram (A C) approach might beviewed as
acombination of imagefiltering and spectral smilarity map-
ping techniques. One can easily deriveanumber of useful
auto-correl ogram operators by combining an appropriate
spectrd similarity measurewith aspatial filter design. The
first approach isto construct an auto-correlogram opera-
tor that computes a spectral distance between the center
cell of themoving filter window and every other cell init.

Similarty values
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Thespatial filtering portion of the algorithm then appliesa
filter kernel or function to the set of similarity valuesand
outputsasingle parameter to the auto-correl ogram image.

The advantage of thisapproach isthat we can usea
great variety of existing spatia filtersand utilizethe statis-
tical properties of the spectral similarity values for the
givencell. Thedternative, but lessattractive approachis
to somehow process al cell spectra within the moving
window and assemble a single representative spectrum
that will be used in the spectral similarity computation.
The drawback of this method isthat the statistical infor-
mation about the local spectral variability of the image
will be lost for further processing or output. Besides, it
will limit the possible range of processing algorithmsthat
might be generated using this approach.

We can start the list of possible spatial filterswith
the ssmpl efilter that doesaweighted averaging of spectral
similarity values within the window. The output auto-
correlogram image then represents an average spectral
similarity value between each cell anditsneighbors. The
result is easy to understand and provides a good estima-
tion of the spectral-spatial variability. The weakness of
thisfilter isthat it blurs the image and is sensitive to the
presence of boundaries between two spectrally different
materials within thewindow. Thisisusually not a prob-
lem for the scenes that do not contain any human-made
structures. The averaging of the SS values within the
window issimilar to applying a L aplacian edge enhance-
ment omni-directional operator. Thecommon Laplacian
mask iscomposed of an eight in the center pixel location
with -1 weighting coefficientsin the surrounding locations.
The SS-variability factor computed for the cell itself isO
(if we are using the spectral angle mapper algorithm) and
the operator basically computes the average of the SS
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Figure 1. An example of auto-correlogram framework for a 3x3 filter window.
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valuesfor the eight immediate neighbors. The output of
thiskind of auto-correlogramfilter isvisually very similar
to atypical Laplacian operator output.

The nonlinear spatial filters represent another im-
portant class of filters that might be used successfully in
the auto-correlogram design. Thisclassof filtersdoesnot
compute a linear summation of elements multiplied by
constant weights (filter kernel values). Instead, they use
various other methods to process input cell brightnesses
and compute filter output. The most popular non-linear
filter isdefinitely amedian filter. It has been widely used
in noise and bad data removal algorithms. The median
filter computesthe median value of al cellswithin afilter
window and usesit asan output. The drawback of using
thesefiltersistheir cumulative nature. Thesefiltersmight
help to visualize inter-band and inter-pixel relationships
that occur in some subset of the bands, but they fail to
detect a single band occurrence of a sensor problem or
some spectral phenomena. The“cumulative” filterswork
with statistical information and provide agood representa-
tion of overall spectral behavior within the scene. Basi-
cally, they work as hyperspectra
edge detectors. They are not in-
tended to |ocate subtle anomalies
or detect sensor artifacts. For
thesetaskswe haveto introducea
different kind of filter that will ex-
hibit spectral and spatial selectiv-
ity. One of the simplest ap-
proachesisto construct three auto-
correlogramsfor different parts of
the spectrum and then display
them as an RGB image. How-
ever, this does not solve all the
problems and results still depend
on an arbitrary selection of wave-
length ranges.

Aninteresting set of possible
AC-operatorsmight be constructed
by applying afilter function that
estimates how fast aspectral simi-
larity factor declineswith thedis-
tance from the center of the win-
dow. Another interesting set of
operatorsarisesfrom applying lo-

rra=

cal directional estimatorsto thefilter window. Inthiscase,
in addition to the AC output discussed above, the algo-
rithm can generate an image that depicts the direction of
the strongest spectral similarity for every cell intheimage.
All the cells that have no preferred direction of the SS-
coefficient and belong to a spectrally isotropic areawill
get a 0 value, that refers to the absence of a dominant
direction. However, image cellsthat belong to linear fea-
tures will receive a certain value that will indicate their
orientation. This kind of filter might be used as a good
quality assurancetest for an image, becauseit allows de-
tection of different kind of resampling and post-process-
ing algorithms applied to animage.

A completely different ideamight be used to create
an auto-correlogram operator for detecting spectraly lo-
calized dissimilarities between bands. In many casesitis
desirable to find out how the spectral variability of the
ground features changes with the wavelength. A simple
implementation of such an operator might search for a
wavel ength that maximizesthe output of somelocal func-
tion F(x,y) for every image cell. A variety of functions
might serveaslocal estimators of imagevariability: abso-
[ute maximum differences, local standard deviation, or
some other statistical measures. The wavelength value
(or band number) that maximizes the function output for

Figure 2. Example of the application of average spectral angle auto-correlogram operator
to an agricultural scene. Wavelength range 0.5 - 1.1 micrometers.
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agiven pixel isthen stored in the output auto-correlogram.
The output depicts the spatial distribution of maximum
spectral variability of the hyperspectral image. Thiskind
of operator isvery sensitiveto the calibration procedures
applied totheimage. Application of

such operators to the raw digital
numbers of the hyperspectral sen-
sors is not going to produce any
meaningful resultswithout some sort
of calibration or normalization pre-
processing.

Results

We have applied different
kinds of auto-correl ogram operators
to anumber of hyperspectral scenes
produced by the AVIRIS sensor and
other commercial hyperspectral im-
agery. Thegoal of our study wasto
evaluate the potentia value of the
approach for datavisualization, im-
age quality inspection, and detection
of small anomalies.

The average spectral angle
auto-correlogram operator has been

appliedtoalow dtitude AVIRISim-
age (Figure 2) taken over the state
of Maryland. This isatypical agricultural scenecontain-
ing avariety of bare soil and vegetated fields, forested
areas, and ariver. Itiseasy to seethat visualy thiskind
of auto-correlogram resemblesthe output of the Laplacian
edge detection filter. For every pixel we computed an
average spectral angle between the cell and its eight im-
mediate neighbors. The maximum values (that correspond
to maximum spectral differences) are concentrated along
edges between distinct ground features such asroads, dif-
ferent kinds of agricultural fields, water, and human made
structures. The cumulative nature of the operator pro-
videsagood general overview of the spectral-spatial vari-
ability withintheimageandisrelatively insensitiveto the
noise or sensor problemsinindividual bands. The output
auto-correl ogram provides avisual clue to the texture of
the objects on the ground. Vegetated and bare soil fields
are easily distinguished by absolute values aswell as by
image textures. The highest variability is found in the
forested areas, partially because of their irregular texture
and a significant shadow effect. The output of the auto-
correlogram operator might be analyzed also on aloca
basis, for example by inspecting spectral variahility prop-

Figure 3. Thresholded version of the average spectral angle auto-correlogram.

erties of the individual fields. The auto-correlogram of
the agricultural field might be extracted out of the output
and displayed independently. The contrast-enhanced auto-
correlogram may reveal the existence of patternsthat might
correspond to the different soil or plant conditionswithin
afield.

Another possible application of the average spectral
angle auto-correlogram is an edge detection scheme that
workssimultaneoudly on all imagebands. Thethresholded
version (Figure 3) of the auto-correlogram might be used
as input to an automatic image vectorization procedure.
The advantage of using thewhol e set of image bands over
picking asingle band for edge/ border vectorizationisthat
it unambiguously usesall avail ableinformation and isnot
dependent on selecting acorrect image band.

However, constructing ahyperspectral edge detec-
tor is probably not a very practical use of the auto-
correlogram. One of the most useful areas where auto-
correlograms might really produceinteresting resultsisin
sensor defects detection and image quality assurance.
Everybody who has worked with the currently available
hyperspectral imagery hasprobably encountered problems
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associated with the sensor or registration
system malfunctions. In many casessuch
image degrading artifacts occur in some
small subset of the bands and appear on
the image in some regular geometrical
shapes. Thetypical sensor errorsinclude
changeinthesignal amplitude, excessive
noise, or even completelossof theimage
in some spectral bands. Moreinteresting
artifacts are introduced by registration
systemsincluding spatially misplaced por-
tions of images. Some post-processing
operation such asgeo-rectificationisalso
apossible source of systematic errorsthat
might significantly affect the quality of
further hyperspectral image analysisand
classification. Sometimes, if thedetailed
post-processing history of theimageisnot
available, it is important to screen the data for possible
systematic errorsor the presence of artificially shaped spec-
tral anomalies. Detection of image resampling and the
actual resampling pattern might also proveto bevaluable.

Detection of spatial resampling applied totheimage
isarelatively smpletask and might be efficiently achieved
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Figure 4. The directional auto-correlogram operator applied to
the low-altitude AVIRIS image that has been geo-rectified using
a nearest neighbor resampling.

Figure 5. “Maximum spectral difference” auto-correlogram for the portion of AVIRIS
image taken over Cuprite site.

by constructing a directional auto-correl ogram operator
that depicts the direction of strongest spectral similarity
for every cell intheimage. We have constructed an auto-
correl ogram operator that findsfor every image cell amost
spectrally close neighbor (within the processing window
centered around the current cell) and checks asimilarity
threshold. If spectral similarity iswithinagiventhreshold
rangethispixel isconsidered to haveasignificantly smilar
neighbor. Therelative position of the similar cell isthen
converted to one of the four or eight possible directions
and the output auto-correlogram cell is marked with this
value. If the closest spectral similarity value is below a
user-specified threshold, then such cell is considered to
haveno preferred direction and it isappropriately marked
intheoutput. Oneof the possiblewaysto defineathreshold
istousetheloca standard deviation of the spectral simi-
larity as a basis for the value. We applied such a direc-
tional auto-correlogram operator tothelow-dtitude AVIRIS
scene taken over agricultural fields of the Salinas Valley
(Figure4).

Thislow-atitude AVIRISimage has been post-pro-
cessed in order to remove adistortion typically associated
with the low-altitude scan-line hyperspectral images. It
hasbeen geo-rectified and resampled using anearest-neigh-
bor resampling technique. A significant amount of new
image cellsthat arejust duplicates of their neighborshave
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been introduced in theimage. The set of nearly horizon-
tal and diagonal linesareactually apattern of theresampling
procedure applied to the image. Each of the black cells
exhibitsunusually high spectral similarity with one of its
neighbors (in this particular case of nearest-neighbor
resampling, cellsareidentical to each other). Thedirec-
tional auto-correlogram for the original image does not
contain any of those patterns and contains a very small
amount of spectrally similar cells. Thisisagood illustra-
tion of how an auto-correlogram might find and reveal
statistical and functional relationshipsthat existintheim-
age. Thisapproach might be used alsointhe casewhenit
isnecessary to restore an original unprocessed imagefrom
theresampled one, but the original resampling mapislost
or not available. The drawback of thisoperator isthat it
does not allow us to determine the exact position of the
original cells, because we do not have a basis to distin-
guish the newly introduced cells from the original ones.
Both kinds have high similarity valueswith each other and
no signs of being original. This consideration limits the
accuracy of the method to + 1.

Thedirectional auto-correlogramiseffectivefor de-
tecting patternsthat are not localized to afew individual
bands but occur in most bands of theimage. A significant
number of defectsin hyperspectral imagesactually occur
within asingleband and might call into question all further
processing results with that data. Figure 5 shows an ex-
ample of the application of a maximum difference auto-
correlogram operator to a portion of the high-atitude
AVIRIS scene taken over Cuprite, Nevada. Some of the
hyperspectral image artifacts might be detected by finding
for every image cell awavelength (band) that maximizes
differences between the cell anditsneighbors. The auto-
correlogram output then may contain two possible types
of images: absolute maximum differencewithinthewin-
dow and awavelength (band number) where this differ-
encewasrecorded. When such asimplified operator was
applied to the Cuprite scene, it detected someregular geo-
metrical shapesinthe both types of auto-correlogramim-
ages. The wavelength image allowed us to quickly pin-
point the band number 129 (1.573 micrometers) respon-
sible for these problems. This approach still does not
guaranteethat every kind of single-band sensor defect might
beidentified automatically. Besidesfinding sensor prob-
lems, the detection of the wavelengthswhereimage cells
exhibit the most variability or some specific behavior is
also useful for general scene understanding, because it
provides someinitial clues about where theimageinfor-
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mation isand how it is distributed across the bands. The
atmospheric absorption bands are a significant source of
noise and generally should be excluded from processing.
A great variety of auto-correl ograms might be constructed
by selecting adifferent variability criterion or functional -
lowing us to adjust the algorithm to different problems
and hyperspectral data sources.

—

Conclusion

A new, easily implemented approach for visualizing
hyperspectral images has been demonstrated. The pro-
posed auto-correl ogram method can be easily modified to
suit agreat variety of quantitative processing and analysis
needs. Thebasicidea, e aborated in acollection of differ-
ent algorithms, isto explore how spectral or other proper-
tiesof each cell intheimage differ from some subset of its
neighbors. The output of all the algorithmsis alwaysan
image that depictsthe spatial distribution of the explored
phenomenon. A further extension of visualization tech-
niques that use the concept of the auto-correlogramisan
RGB or RGBI display of a humber of different auto-
correlogramswhere each correlogram typeisresponsible
for either the red, green, blue or intensity channel. The
application of auto-correlograms to sensor defect detec-
tion and general scene understanding has been demon-
strated using publicly available hyperspectral imagery. All
of thedgorithmswereimplemented inside the hyperspectral
module of TNTmips, an advanced GIS and image pro-
cessing system.
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