
Tutorial

Writing Scripts
with SML

in

TNTmips®

TNTedit™

W
R
I
T
I
N
G

S
M
L

page 2

Writing Scripts with SML

Before Getting Started
This booklet introduces the fundamentals of creating scripts in the Geospatial
Scripting Language (SML) in TNTgis. The exercises in this booklet introduce you
to basic SML concepts and scripting conventions and provide many examples of
powerful scripts for custom manipulations of the spatial data objects in your
TNTgis Project Files.

Prerequisite Skills This booklet assumes that you have completed the exercises
in the Getting Started with TNTmips, TNTedit, and TNTview; Introduction to the
Display Interface; and Introduction to Geospatial Scripting tutorial booklets.
Please consult those booklets for any review of essential skills and basic tech-
niques you need. You can begin to use SML even if you have no programming
background, but SML is a powerful language and yields the most benefit in the
hands of a good programmer.

Sample Data The exercises in this booklet use sample data and scripts distrib-
uted with TNTgis. If you do not have access to a TNTgis DVD, you can down-
load the data from the MicroImages web site. This booklet uses sample data files
in the SML, CB_DATA, COLOR, SF_DATA, and SURFMODL sample data directories. You
will also need scripts in the sample script collection described on page 4. Make
a read-write copy of the sample data on your hard drive so changes can be saved
when you use these objects.

More Documentation This booklet is intended only as an introduction to the
TNTgis Geospatial Scripting Language. Descriptions of sample scripts can be
found in a variety of Technical Guides that are all available from MicroImages’
web site.

TNTmips Pro, Basic, and Free TNTmips comes in three versions: TNTmips Pro
(which requires a software license key), low-cost TNTmips Basic, and TNTmips
Free. TNTmips Basic and TNTmips Free provide nearly all the capabilities of
TNTmips Pro but limit the size of the geospatial objects and attribute tables that
can be used in your project. TNTmips Basic and TNTmips Free allow you to
create and use scripts in the Display process (database queries, style scripts,
macroscripts, and others) and the Geoformula process, but only TNTmips Pro
allows you to create and run complex standalone geospatial scripts.

Randall B. Smith, Ph.D., 21 December 2015
©MicroImages, Inc., 1997—2015

You can print or read this booklet in color from MicroImages’ web site. The
web site is also your source for the newest tutorial booklets on other topics.
You can download an installation guide, sample data, and the latest version
of TNTmips. http://www.microimages.com

page 3

Writing Scripts with SML

SML in TNTgis

The exercises on pp. 4-38
introduce the SML Editor
and basic SML scripting
concepts and conventions.
Pages 38-52 discuss
specific program tech-
niques for different types of
geodata objects. The
remainder of the booklet
introduces advanced SML
development techniques
and advanced script types.

STEPS
select Script / Edit Script
from the TNTmips Pro
menu

SML in
TNTmips

The Geopatial Scripting Language (SML) is the gen-
eral-purpose scripting language used throughout
TNTgis. If you have written a selection query, you
have already used basic elements of SML. But you
can also use SML to design custom processes and
add unique capabilities to TNTgis. SML has
evolved as the capabilities of TNTgis has grown.
From its origins as a scripting language for custom
processing of raster images, SML can now process
any type of spatial object and associated database
information. You can use SML scripts to operate on
the geospatial data objects in Project Files, on ob-
jects displayed in a spatial view, or even to create a
virtual display layer in a view.

You can create and use standalone SML scripts in
TNTmips Pro, TNTedit, and TNTscript. Scripts that
run in the Display process (tool scripts, macroscripts,
and display control scripts) can also be used in
TNTview and distributed and used in TNTatlas.
SML scripts are platform-independent; they run with-
out modification on any computer that runs
TNTmips.

SML is an interpreted scripting language. This
means that your computer evaluates and executes
script statements one at a time. Interpreted languages
are slower than compiled languages (like C++) in
which the program code
is pre-evaluated to cre-
ate a fast, machine-read-
able version. On the other hand, SML has a
simpler structure and syntax than compiled
languages, making the task of writing
useful scripts much easier. And SML
provides access to many of the compiled
functions and processes found in
TNTmips, which can speed script execu-
tion for complex operations.

SML in TNTedit

The tutorial booklet
Introduction to Scripting
provides an overview of
different types of scripts
that you can create and use
in TNTgis.

Choose Script / Run to run a
completed SML script
without opening the SML
Editor.

page 4

Writing Scripts with SML

Sample Geospatial Scripts
A large collection of sample geospatial scripts of all types is distributed with
TNTgis. If you have installed the full version of TNTgis, a file entitled SCRIPTS.ZIP

should be present in your TNTgis installation directory. Unzip this file to create
a SCRIPTS directory with subdirectories containing sample scripts in various cat-
egories. You can also download the latest version of this zip file from the scripting
page on the MicroImages web site:

www.microimages.com/sml/index.htm

This Scripting page is also an excellent resource for the latest information about
geospatial scripting in the TNT products. It provides links to pages covering
different script categories and topics. These individual category pages provide
examples and descriptions of different scripts in that category.

Many sample scripts are discussed in illustrated color Technical Guides that
provide detailed information about the sample script along with annotated ex-
cerpts. Links to these TechGuides can be found with the script descriptions on
the script category web pages. You can also access them from the Technical
Guide catalog page:

www.microimages.com/documentation/html/category.htm

TechGuides illustrating sample scripts can be found under the following category
links: Scripting, Scripts by Jack, CartoScripts, GraphTips, Macro Script, and Tool
Script.

page 5

Writing Scripts with SML

Run VIEWSHED.SML

VIEWSHED.SML produces a binary raster (1’s
shown here in yellow) that indicates the
areas visible on an elevation surface
(shown here in relief shading) from a
stream of points along input vector line
elements (shown here in cyan). Thus if
the line elements represent roads, then
the yellow areas define the vistas
available to travelers on that road.

The VIEWSHED.SML script is an example of an SML
process script. The script and its sample data in
VIEWSHED.RVC are contained on the TNTgis DVD and
are also available on the MicroImages web site. The
script creates an output binary raster object that
shows which parts of its input elevation surface are
visible from the stream of points along the input line
element. Many applications that deal with line-of-
sight surface characteristics can use the techniques
illustrated in this script.

Open the VIEWSHED.SML script in the SML Editor win-
dow by following the steps listed. Before you run
the script, scroll through it and survey its contents.
Unless you are unfamiliar with a programming lan-
guage such as C or BASIC, you should recognize
statement forms and programming structures.

Note that the hardest work of the script is done with
calls to various SML functions, such as
RasterToBinaryViewshed(). MicroImages is
constantly adding new functions and classes to
SML. Being aware of what functions
and classes are available and under-
standing what they do is essential to
making the most of SML. In addition to
using the built-in SML functions, you
can write your own interpreted SML
functions and procedures, import
classes written in Visual Basic or C, or
invoke external programs from within
SML scripts.

STEPS
in the SML Editor
window choose File /
Open / *.SML File and
select VIEWSHED.SML from
the SML directory
scroll through the script
for a first look at SML
click [Run...] at the
bottom of the window
when prompted for the
input raster "RIN", select
DEM from the VIEWSHED

Project File in the SML

directory
for the input vector "V",
select VPATH from the
VIEWSHED Project File
select a new Project File
and object for the output
raster "ROUT"
use the TNTmips Display
process to view three
layers: VIEWSHED / DEM,
your new output raster,
and VIEWSHED / VPATH

page 6

Writing Scripts with SML

The SML Editor

Color syntax highlighting in
the SML Editor window
makes your scripts easier to
read and understand.

Keywords and names of
predefined functions and
classes are highlighted in
blue.

STEPS
clear the SML Editor by
selecting New from the
File menu
type in the script shown
in the illustration below
click [Run] to execute
the script
choose File / Save As /
*.sml File and save the
script as HELLO.SML

The Console Window
shows the results of
print statements you
embed in your scripts.

The SML Editor window provides all of the tools
required for you to create and run standalone SML
scripts. To illustrate some of the basic elements of
SML syntax, type in the sample script illustrated
below into the SML Editor. The script consists of
four lines, with each line containing one program
statement. The first statement declares a string vari-
able named stringvar$. The second statement calls
a predefined function that erases the contents of
the Console Window. (This function requires no
parameters, therefore the parentheses following the
function name are empty.) The third statement as-
signs the string "Hello" to the previously-declared
variable stringvar$. The final statement calls a pre-
defined print function to print the value of stringvar$
to the Console Window. Note that the SML Editor
uses color syntax highlighting to make scripts more
readable.

Spaces and tabs in your script are ignored when the
script is interpreted by SML. Feel free to use spaces

and indents to improve the
clarity and readability of your
scripts. For example, this
script leaves spaces next to the
parentheses in the print state-
ment.

The second program state-
ment is followed by a
comment. The comment char-
acter (“#”) tells SML to ignore
the rest of the line. If a com-
ment character is the first
character on a line, SML ig-
nores the whole line. Use
comments liberally to docu-
ment the script logic for
yourself and others.

Text strings are
highlighted in cyan.

Comments (beginning
with the # character)
are highlighted in red.

page 7

Writing Scripts with SML

STEPS
edit the previous script
to remove the closing
parenthesis ") " at the
end of the print
statement
select Syntax / Check
from the SML Editor
click [OK] on the
resulting Message
window

The Check option on the Syntax menu checks your
script for syntax problems. For historical reasons
SML includes two levels of syntax checking, basic
and strict. Basic SML syntax rules cover proper
spelling of function and class names, the number
and type of function parameters, proper closing of
parentheses and loops, and so on. Strict SML syn-
tax rules have also been instituted to help ensure
the correct interpretation of complex scripts:

1. All variables must be declared before they
are used in a statement.

2. Assigned variable values must match the
declared variable type.

3. All statements must end in a semicolon.

A violation of the basic SML
syntax rules is reported as an
error in the message line at the
bottom of the SML Editor win-
dow. The cursor is placed at
the end of the last part of the script that the syntax
checker could correctly interpret. A Message win-
dow also opens and reports the nature of the error
(if possible) and the line number. Often the error
immediately precedes the cursor location, but if the
error involves nested processing loops, you may
need to search some distance around the cursor to
find the problem. A script cannot be run until all
basic syntax errors have been corrected.

Violations of strict syntax rules are reported in a Script
Warnings window only when there are no
basic syntax errors. Violations of strict syn-
tax rules do not prevent your script from
being run, but they may prevent correct
interpretation of your script statements by
the SML
parser.

Checking Syntax

restore the closing
parenthesis to the print
statement
delete the first statement
in the script (the variable
declaration) and the
semicolon from the end
of the last statement
select Syntax / Check
from the SML window
click [Close] on the
resulting Script
Warnings window

page 8

Writing Scripts with SML

Script Reference Window
STEPS

choose Insert / Symbol
from the SML Editor
window
in the tree control in the
left panel of the Script
Reference window,
press the plus sign icon
next to Constants to
show the entries in this
category
left-click on PI in the
Constants list

Choosing any option from the
SML Editor's Insert menu
opens the Script Reference
window. The left side of this
window is a tree control that
lists the script reference cat-
egories, including Constants,
Variables, Classes, Functions,
and others. Click on the plus
sign icon next to any of these category entries to

show the listing of items in that cat-
egory. Pausing the mouse over the
name of a class, function, keyword, or
operator shows a ToolTip with a brief
description of the item. When you
left-click on an individual entry in the
list, the pane in the right side of the
Script Reference window shows the
description and further documenta-
tion for that entry. You can keep the
Script Reference window open while

you continue to write and edit your script.

You can use the Insert icon button on the Script
Reference window to insert any selected mathemati-
cal constant, keyword, operator, or predefined
function into your script. The documentation for
many of the predefined functions includes an ex-

ample script. When
you have selected
such a function in
the list, the Insert
Example button be-
comes active,
allowing you to in-
sert the complete
script example into
the script you are
editing.

press the minus sign
icon next to Constants to
collapse this category
expand the Functions
category
expand the Console
Function group in the
Functions list
select the clear function

Insert

Insert
example

ToolTip giving
a brief
description

page 9

Writing Scripts with SML

Keywords and Operators
STEPS

in the Script Reference
window, expand the
Operators list and
examine the available
operators
choose File / Open /
*.SML File and select SML

/ OPERATORS.SML

examine the script, then
press [Run]

The entries in Keywords list are reserved words that
have special meaning to the SML parser. Keywords
are reserved for variable types used for declarations
(such as array, class, numeric, raster), conditional
tests (if, then, else, and, or), and process flow con-
trol (for, while, to, step, return, break). There are
also a number of preprocessor commands (each be-
ginning with the “$” symbol) that are parsed before
the remainder of the script to provide additional con-
trol. Preprocessor commands are discussed in more
detail on a later page.

The Operators list includes a variety of
standard mathematical and logical op-
erators and symbols. In addition to
basic arithmetic operators (+, - , *, /),
the modulo or remainder operator (%)
returns the remainder of a division. The
operators ++ and -- are provided as
compact ways to increment or decre-
ment (respectively) the value of a
numeric variable by 1. The following
two expressions are equivalent:

Likewise, the operators +=, -=, *=, /=,
and %= provide shortcut forms to ap-
ply the specified mathematic operation
to a numeric variable. The following two
statements are equivalent:

++a; a = a + 1;

a += 3; a = a + 3;

Standard numerical comparison operators (> [greater
than], >= [greater than or equal to], etc.) are also
provided. An expression such as a > b returns ei-
ther 1 (true) or 0 (false). The general comparison
operator (a <=> b) returns -1 if a < b, 0 if a == b, or 1
if a > b. The logical operators and and or can be
represented either by keyword or by their operator
symbol (&& and ||).

page 10

Writing Scripts with SML

Variables
You can declare and use variables for string, nu-
meric, logical, array, and class entities in SML. Simple
variables are also available for spatial objects (ras-
ter, vector, CAD, TIN, and region). However, these
and other spatial objects are now also represented
by classes that provide greater control and flexibil-
ity.

Variables in SML follow these conventions:

String: values in assignment statements must be
enclosed in double or single quotes. Single quotes
must be used to enclose strings with embedded car-
riage returns (multi-line strings).

Numeric: values can be integer or decimal.

Logical: implemented as numerics where 0 = false
and all non-zero values = true. You can use either
the logical or numeric values in assignment state-
ments. Thus:

done = 0;
if (condition) done = true;
if (done) <statement>;

Array: numeric arrays are implemented as a variable
type and can be either one-dimensional or two-di-
mensional. Your declaration of an array must specify
the name of the array and the size of each dimension
of the array as follows:

array numeric arrayName[10];
array numeric arrayName[4,5];

In the declaration of a two-dimensional array, the
first value specifies the number of columns and the
second number specifies the number of rows.

Class: declarations of class variables start with the
"class" keyword followed by the class name and
the name of the class instance:

class COLOR red;
class STRING name;

STEPS
choose File / New to
clear the SML window
type the first three lines
of the script shown
above and press
<Enter> to start a fourth
script line
select Syntax / Check
select Insert / Symbol
and choose Numeric
from the Type menu on
the Insert Symbol
window
select len from the
Numeric variable list and
press [Insert]
type in the remainder of
the fourth statement
complete the rest of the
script and click [Run]

NOTE: you can declare
variable names for spatial
objects using the keywords
raster, vector, cad, tin, and
region. However, using the
more modern class
structures for spatial
objects in SML is preferred
and will provide better
integration with other SML
classes.

page 11

Writing Scripts with SML

Expressions and Statements

STEPS
choose File / Open /
*.SML File and select SML

/ EXPRESS.SML

run the script
decrease the value for
the width variable and
run the script again

A single equal sign (=) is
the assignment operator
used to assign a value to a
variable:

To test for equality in a
conditional expression, use
the Equal To comparison
operator, a double equal
sign (==) as in:

numeric num = 5;

if (num === 5) {
<statement>;

}

Expressions are constructs that reduce to
some value. Thus pi ̂ 2, 5.10, and R[i, j] / 100
are all expressions. Expressions can be used
on the right side of assignment statements
and as arguments in function calls.

Statements can be simple or complex. A
simple statement can consist of an assign-
ment, such as

if (condition) {
function(r);
area = pi * r^2;

}

SML also lets you use braces (“curly brackets”) in-
stead of spelling out begin and end:

if (condition) begin
function(r);
area = pi * r^2;

end

A complex statement involves multiple actions on
separate script lines and is bracketed by the key-
words begin and end in the form

if (<condition>) <statement>;

Note that the <condition> expression must be en-
closed in parentheses. The then keyword is optional,
as is the else clause:

if (<condition>) then <statement>
else <statement>;

Conditional statements have the form

len = 2; width = 5;

Multiple short statements can be placed on
a single line if separated by semicolons:

area = pi * r^2;

Conditional statements can test for logical combi-
nations of conditions as well:

if (<condition1> and <condition2>) then
<statement>;
if (<condition1> or <condition2>) then
<statement>;

page 12

Writing Scripts with SML

Branching Using Switch and Case
STEPS

choose File / Open /
*.SML File and select SML

/ SWITCH.SML

run the script
change the value of
variable num and run
again

Process branching based on the value of a numeric
or string variable can be set up using a series of if ..
then .. else statements:

if (num == 5) then
<statement>;

else if (num == 3 or num == 7) then
<statement>;

else if (num >= 11 and num <= 99) then
<statement>;

For instances where multiple
values and outcomes need to
be specified, this structure can
be cumbersome. The switch
construct provides a more
compact syntax.

A switch construct using a string
expression would have the form:

switch (outformat$) {
case “GeoJP2”:
<statement>;
<statement>;
...
break;

case “GeoTIFF”:
<statement>;
<statement>;
...
break;

}

A switch statement can check
the value of either an integer
or string expression (enclosed
in parentheses following the
switch keyword). The values
to be tested are specified us-
ing the case keyword. Case
statements can specify a single
value, a series of values, in-

equality to a value, or a range of numeric
values. Case statements use a very com-
pact syntax, as illustrated by the sample
script in this exercise. Note that each case
value specification is followed by a colon
(:). Multiple statements can be executed for
each case without requiring enclosure be-
tween begin-end keywords or braces. The
series of statements for each case are termi-
nated by a statement with the break
keyword. The entire set of cases must be
enclosed within braces or begin-end key-
words.

page 13

Writing Scripts with SML

Raster Algebra and “For Each” Loops

Note that as with all
computer systems, some
operations yield very
small rounding errors in
floating point values.

NOTE: the "for each"
keyword sequence also may
be written as one word:
"foreach". SML does not
support nested "for each"
commands.

The break statement is
used to exit a loop before
the loop might otherwise
terminate. It is often used in
a conditional test inside the
loop. The break statement in
this example prevents
division by zero.

STEPS
choose File / Open and
select BREAK.SML from the
SML directory
run the script

R = R * scale; # rescale each cell in R
Rout = Rin; # copy values from Rin to Rout

Implied Loops. For raster objects you can use simple
“raster algebra” in an assignment statement to ex-
ecute an implied loop through all of the cells in the
raster. The expression on the right side of the state-
ment is evaluated for each cell and the result assigned
to each cell in the raster on the left side:

for each Rastvar {<statements>}
for each Rastvar[lin,col] <statements>

The lin and col variables in the second example
can be used to indicate the line number and column
number of the “current position” in the raster if these
values need to be accessed within the processing
loop.

You can also reference a region object in a “for each”
loop to restrict processing to the cells occurring
within the region:

Rasters objects that you use in implied loops must
have the same line-column dimensions.

For each statements explicitly loop through all cells
of the specified raster. These statements have the
forms:

for each vector_element[n] in V
 <statement>

In the vector notation, vector_element
can be “point”, “line”, “poly”, or
“node”. The [n] is optional and can be
omitted.

for each Rastvar in Region
 <statement>

You can also use a “for each” loop to
iterate through all of the elements of a
particular type in a vector object:

for each poly in Vect <statement>

If given, the variable n is used as the
loop counter.

The syntax discussed here
can be used for raster
objects represented by a
simple raster variable, class
RASTER, or class
RVC_RASTER.

page 14

Writing Scripts with SML

“For” and “While” Loops
STEPS

choose File / Open /
*.SML File and select SML

/ WHILEFOR.SML

run the script
change the while
condition and run the
script again
change the step value in
the “for” loop and run
the script again

While. A"while" loop runs continuously as
long as the loop condition tests true.

for i = 1 to 11 { <statements> }
for i = 1 to 11 step 2 (<statements> }

Loops using “for” statements allow a script to oper-
ate on portions of a set of values (raster cells, array
values, element numbers) specified by ranges:

For statements have several forms:

for i = 1 to Vect.$Info.NumPoints {
<statement; statement; ...>
}

for i = 1 to NumLins(Rin) step 3 {
for j = 1 to NumCols(Rin) step 3 {
Rout = Rout + FocalMean(Rin,3,3);
}

}

The “step” keyword (or the equivalent in C
syntax) can be used if you don’t need to
operate on every item in the specified range.
The nested loops in the example below would
operate on raster cells at step intervals of 3
lines and 3 columns:

Note that the “raster algebra” assignment
statement in the example above does NOT
invoke an implied loop, since this statement
is already being executed within an explicit
processing loop.

while (condition) <statement>

The “while” loop in this
example executes until
variable “a” exceeds a
value of 360.

The second part of the sample
script uses a “for” loop to print the
sines of angles from 0 to 360
degrees with a step interval of 30
degrees.

for (i = 1; i<= 11) (<statements> }
for (i = 1; i <= 11; i += 2) {

<statements> }

You can also use syntax as in the C programming
language:

You need to be careful in using “while” loops.
If the condition never becomes false, you get
an infinite loop.

page 15

Writing Scripts with SML

Built-In Functions
STEPS

clear the SML Editor
with File / New
if the Script Reference
Window is not open,
choose Insert / Function
from the SML Editor
expand the Functions
listing in the Script
Reference window
expand the Math
function listing in the
Script Reference
window
select the abs function
in the list

The real power of SML lies in its rich collection of
built-in functions and classes. The built-in func-
tions are organized into different function groups,
each with its own expandable listing in the Func-
tions category in the Script Reference window’s tree
control.

SML includes many predefined functions that al-
low your scripts to create, read, process, and write
geospatial objects and associated database infor-
mation in your TNT Project Files. Many SML func-
tions directly utilize the compiled internal functions
used in corresponding TNTmips processes, provid-
ing fast execution. Specialized functions are also
provided for user input and working with displays
of geospatial data. In
addition, general-pur-
pose functions are
provided for standard
mathematical opera-
tions, set operations,
and reading from and
writing to text files.

When you select a
specific function in the
listing, its documenta-
tion is shown auto-
matically. The entry in-
cludes the function pa-
rameters, the value re-
turned by the func-
tion, and in most cases
a script example utiliz-
ing the function. Func-
tion names are case-
sensitive.

Keep the Script Reference window open for the next series of exercises.

page 16

Writing Scripts with SML

Navigating the Function List
SML includes hundreds of built-in functions and
classes, so the Script Reference window allows you
to search by keywords. In this example you are
looking for a function to compute a buffer zone for
vector elements. A search on the words “buffer
zone” locates two versions of the function in the
Object Conversion function group. Selecting one
of these search results takes you to the documenta-
tion for that function. For functions that include
classes as parameters, the class names in the param-
eter documentation (shown in blue) are links to the
class documentation.

Once you have followed one or more such links,
you can easily navigate through the documentation
locations you have visited using the Back and For-
ward icon buttons.

STEPS
type “buffer zone” into
the Find field at the top
of the Script Reference
window
press the Find
icon button
in the Search Results
list, click on the link to
VectorToBufferZoneExt
press the Insert
Example icon
button
examine the newly-
inserted script lines in
the SML Editor
press the Back
icon button twice
to return to the abs
function documentation

When a function is
selected, icon buttons at
the top of the Script
Reference window allow
you to insert the function
into the Script Editor or to
insert the example script.

Insert Insert
Example

Back Forward

Find

page 17

Writing Scripts with SML

Console Functions
The Console function group includes functions that
allow you print information to the SML Editor’s Con-
sole Window. You can use print statements to
provide feedback to the user of the script and to
monitor the value of variables as a means of verify-
ing correct execution as you write your script.

The print() function prints unformatted text to the
console. It takes one or more values separated by
commas. The parameter values
can be simple text enclosed in
quotes, string variables, or nu-
meric variables. The print()
function automatically starts a
new output line.

The printf() function prints for-
matted text to the console. The
syntax used for this function
follows that of the printf() func-
tion in the C programming
language. The list of values you
supply to the function is pre-
ceded by a format specification
string that determines how each
following value is formatted as it is writ-
ten to the output. The string consists
of a set of format specification fields (one
for each value passed to the function),
each of which begins with a percent sign.
In the output each specification field is replaced by
the formatted result of the corresponding parameter
value in the list. The format specification string can
also contain ordinary text characters, which appear
in the output as written. The last part of each speci-
fication is a conversion character that indicates the
type of value and its notation. The sample script
uses the following common conversion characters:

STEPS
choose File / Open /
*.SML File and select SML

/ CONSOLE.SML

in the Script Reference
window, expand the
Console function group
select the printf function
and examine its
documentation
run the script

The printf() function does
not automatically start a
new output; you must
specify a carriage return
explicitly using the \n code
within the format
specification string.

s: string f: floating point number
d: signed integer E: number in scientific notation

page 18

Writing Scripts with SML

Using Classes
STEPS

scroll up in the Script
Reference window’s
category list to show
the Classes entry
expand the Classes
entry
expand the Basic Data
Containers entry
select class COLOR in
the list

A class is a structure that bundles related data val-
ues and can also include functions to manipulate
those data values. Class data variables are called
members. Class functions are called methods.

A class may have any number of members, and the
members may be of any data type, including other
classes. A class is declared using the keyword
“class” followed by the class name and your name
for the class “instance” you are declaring:

class COLOR background;

The statement above declares an
instance of class COLOR named
“background”. Class and mem-
ber names are not
case-sensitive, but your class in-
stance names are case-sensitive.

Once you have defined a class
instance, use the form
instance_name.member to refer-
ence a member value. For
example, class COLOR has four
numeric members that can be as-
signed values in the form:

background.red = 50;
background.green = 75;
background.blue = 20;
background.transp = 0;

The “name” member of class COLOR is a STRING
class instance. It is used to set the other color val-
ues using the name of a color as defined in the
RGB.txt reference file supplied with TNTmips:

background.name = "purple";

The “name” member is write-only. Some classes
may include read-only members whose values were
set when the class instance was created by some
other function or class. Values of read-only class
members cannot be changed in your script.

A class may also define
operators that you can use
to compare instances of
that class. The COLOR
class includes the “==” and
“!=” operators that you can
use to test whether two
COLOR class instances are
the same color or different
colors.

page 19

Writing Scripts with SML

Member Inheritance and Type Checking
An important concept with classes is inheritance.
Class POINT2D represents the location of a 2-di-
mensional point; its members are the x and y coordi-
nates of the point. Class POINT3D represents the
location of a 3-dimensional point. Since both types
of point have x and y coordinates, class POINT3D is
derived from class POINT2D. Class POINT3D in-
herits the x and y members it has in common with
POINT2D and also has its own unique member z.
POINT3D also inherits some class methods for ma-
nipulating 2D point data from POINT2D, as well as
having several methods for 3D point data. You can
use inherited members and methods of a class in the
same way you would its native members.

The use of classes al-
lows strong type
checking. Thus,
when you invoke a
function that requires
a POINT2D for a pa-
rameter, you can pass
it any POINT2D class
instance (or deriva-
tive class). But the
function will refuse
any variable that is
not a POINT2D. For
example, you could
not pass such a func-
tion a COLOR class,
because COLOR is
not a POINT2D. By
contrast, since
POINT3D is derived from
POINT2D, you could pass a
POINT3D or anything else de-
rived from POINT2D to a func-
tion that requires a POINT2D.

STEPS
expand the Geometric
Primitives grouping in
the class list and select
POINT2D and examine
its members
select POINT3D in the
same group and
examine its members
scroll down in the
POINT3D documentation
to find the members
inherited from POINT2D

page 20

Writing Scripts with SML

Class Methods
STEPS

select POINT2D in the
Class list
in the listing of POINT2D
class members, click on
GetDistance
examine the
documentation for this
method

select STRING from the
Basic Data Containers
group in the Class list
and examine its member
list
choose File/New in the
SML Editor
enter and run the script
shown below

Class methods may be used to get values from or
assign values to the members of the class or to per-
form some operation using the data contained in the
class. You invoke a class method using the form
instance_name.method().

Many classes have one or more special methods
called constructors that let you declare the class

instance and assign member values in one step.
In the sample script shown to the left, you use a
constructor for class POINT2D that lets you
assign the values of the x and y members. Class
POINT2D also includes methods to get the dis-
tance, squared distance, and angle between the
current point and a second specified point.
Each of these class methods returns a numeric
value. Class POINT3D inherits these three meth-
ods (which take a POINT2D as the parameter)
from its parent class POINT2D. In addition, in
POINT3D you can pass another POINT3D to

the distance functions to return the 3D distance (or
squared distance) between the 3D points.

The STRING class includes methods to return a char-
acter or larger portion from the string, to remove or
replace a portion of the string, to compare the string
with another, and to transform the case of the string.

clear();
class STRING txt$, char1$, uc$;
txt$ = "watershed";

char1$ = txt$.charAt(1);
print(char1$);

uc$ = txt$.toUppercase();
print(uc$);

In this example, the charAt(n) method returns
the n’th character in the string (indexed with the
leftmost character at index 0). The toUppercase()
method returns a copy of the string in all upper-
case characters

page 21

Writing Scripts with SML

RVC System Classes
STEPS

in the Classes list in the
Script Reference
window, expand the
RVC Files and Objects
class group

Some newer classes that
operate on spatial objects,
such as the Import/Export
and Image Pipeline classes,
use RVC_OBJITEM class
instances rather than
spatial object classes to
reference the objects being
processed or created (more
on this later).

SML includes several generations of variables for
working with spatial objects. The original genera-
tion is represented in the Script Reference keyword
list by keywords for the spatial object variables ras-
ter, vector, cad, and tin. The next generation is a set
of classes corresponding to these spatial objects:
class RASTER, class VECTOR, etc. Most of these
simple object classes are now deprecated but are
currently still supported to allow older SML scripts
to run. (Deprecated classes are shown in the Script
Reference window in a category of that name.)

The modern classes representing spatial objects are
found in the RVC System class group. These SML
classes largely mirror the class structure now used
in the internal program code for the TNT products.
In addition to classes for the four types of spatial
objects previously supported (RVC_CAD,
RVC_RASTER, RVC_VECTOR, and RVC_TIN), sup-
port is provided for accessing shape objects in SML
via the RVC_SHAPE class.

In addition to these spatial object classes, there are
RVC classes for certain subobjects of geospatial ob-
jects, such as georeference (RVC_GEOREFERENCE),
color palettes (RVC_COLORMAP) and null masks
(RVC_NULLMASK) for raster objects, and style ob-
jects (RVC_STYLE) for geometric objects. This class
group also includes the base classes from which the
spatial object classes are derived: RVC_OBJECT,
RVC_IMAGE, and RVC_GEOMETRIC. The only one
of these base classes that you are likely to use di-
rectly is RVC_OBJECT, which can be used to
reference or create Project Files (permanent or tem-
porary).

The RVC_DESCRIPTOR class is a container for the
name and description of an object or Project File.
The RVC_OBJITEM class is used to specify a par-
ticular RVC object in a particular Project File.

page 22

Writing Scripts with SML

User-Defined Functions and Procedures
SML allows you to define your own functions and
procedures that you can use to encapsulate se-
quences of program steps that must be repeated in
several places in the script. User-defined functions
return a value using the return keyword, whereas

procedures do not. Of course you must declare
a function or a procedure before you invoke it,
using the form:
func funcname ([parmlist]) {
 statement; statement; ...
 return expr }
proc procname ([parmlist]) {
 statement; statement; ... }

Unless declared otherwise, all script variables
are global. This means that your functions and
procedures can use and modify variables de-
fined elsewhere in the script. In a large or complex
script, this global scope of variables may cause
unanticipated consequences. To limit the scope
of a variable to a particular function or proce-

dure, you must declare the variable as a local variable
within the function definition:

func funcname ([parmlist]) {
local numeric x; ...

where x is a variable name. The function pa-
rameters are exceptions to this rule; their scope
is automatically limited to the function. Local
variables can have the same names as global
variables elsewhere in the script, though this
is not recommended practice. In the examples
shown on this page, variable x retains the de-
fault value 0 in the main script because the
function parameter x is automatically local. In
the second example the assignment of value
100 to d in the function supercedes the value
assigned before the function is called in the
main script unless d is also defined as a local
variable in the function.

STEPS
choose File / Open /
*.SML File and open
LARGER.SML from the SML

directory
run the script

select File / Open /
*.SML File and open
LARGER2.SML from the SML

directory
run the script

page 23

Writing Scripts with SML

A user-defined function returns a numeric value by
default. But you can write a user-defined function
to return another variable or class type by specify-
ing the return variable type in the function definition
immediately after the keyword func:

func string convertStr()
func class POINT3D convPt()

Note that you specify the variable
type (including the class keyword
for class variables), not the variable
name you use in the function defi-
nition. You do not need to explicitly
specify the return variable type for
a function that returns a numeric
value.

A parameters list is optional for user-
defined functions and procedures.
When defining or calling a function
without a parameter list, simply use
an empty pair of parentheses following the name. If
you are using new (rather than previously-declared)
variable names in the parameter list of a
user-defined function or procedure (rec-
ommended), the variable type should be
declared within the parameter list, as
shown by the two script examples in the
illustrations on this page.

The first example script defines and uses
a function to convert a numeric value
representing a date (using the format
YYYYMMDD) to a string with the date
in the form MM/DD/YY. The second ex-
ample script defines and uses a function
to compute the 3D coordinates of a point
that is the center of a triangle. Each in-
put triangle vertex is a POINT3D and the
function returns a POINT3D as well.

STEPS
choose File / Open /
*.SML File and open
DATE.SML from the SML

directory
run the script

repeat with CENTER.SML

from the SML directory

Function Return Values and Parameters

page 24

Writing Scripts with SML

Variables by Reference
STEPS

choose File / Open and
select SQUARE.SML from
the SML directory
run the script

We saw earlier that variables passed to a function or
procedure are normally local in scope, as the proce-
dure works only with a local copy of the variable.
However, you can implement a procedure or func-

tion to change the value of one or more
variables that are passed to it. This is
done by passing to the procedure a ref-
erence to the original variable rather
than the current value of the variable.
A variable reference is indicated in the
parameter list by declaring the variable
in the list using the keyword var, as in
the Pascal programming language.

In the square procedure defined in the
script example, the first parameter is a
local numeric parameter (the value to
be squared). The second parameter is
a variable reference declaring the vari-
able in which to store the squared value.
When the procedure is called, global

variable v2 is passed to the procedure as the sec-
ond variable; the procedure changes its value from
0 to 25. You can pass multiple variables by refer-
ence to a function or procedure to set multiple
variable values within the same function/procedure.

A complex processing script may include a number
of related and interdependent functions and proce-
dures (e.g., one function calls one or more of the
other related functions). Such interdependencies
may make it difficult to define every function/proce-
dure in the script before it is referenced by one of
the other functions/procedures. To avoid this prob-
lem, you can list function/procedure prototypes
(name and parameter list without the definition) near
the top of the script, before any of the functions/
procedures are called or defined. A procedure pro-
totype is included for the square procedure at the
top of the example script.

At this time you cannot
declare function prototypes
for functions that return a
class variable.

User-defined functions
cannot return class
instances that represent
spatial objects (e.g.
RVC_RASTER, RVC_SHAPE,
etc.). You can, however,
pass spatial object variables
by reference to procedures
or functions for modification.

page 25

Writing Scripts with SML

STEPS
in the Script Reference
window expand the
Functions list and then
the Popup Dialog list
choose File / Open /
*.SML File and open
POPUP.SML from the SML

directory
run the script

Interactive User Input
You have several options for providing interactive
user input to your scripts. The simplest method for
the script writer is to use popup dialog functions.
SML includes predefined functions in the Popup
Dialog function group that open dialogs for input of
numeric or string values, yes-no responses, and dis-
playing messages and errors. This function group
also includes functions to allow selection of a data-
base table or table and field. Where
required, the function parameters in-
clude a prompt string that you can use
to explain what value or response
should be entered by the user.

The Raster, Vector, CAD, and TIN func-
tion groups include predefined
functions for selecting an input and
output object of that type (such as the
GetInputRaster and GetOutputRaster
functions in the Raster function
group). These functions take an ob-
ject variable in the appropriate object
class for the selected object (such as
class RVC_RASTER for a selected ras-
ter object).

The File function group provides predefined func-
tions that open dialogs for selecting a directory,
input and output file names and text file names.

The popup dialog
windows display a
default value if you use
one in the function call.

page 26

Writing Scripts with SML

Custom Dialog Windows
Although popup dialog functions are easy to program and use, each function
opens a separate transient dialog window. In a complex processing script requir-
ing a number of inputs and parameter settings, using a separate popup dialog for
each may make for a cumbersome user interface.

You can make a complex script easier to use by creating one or more custom
dialog windows to provide a consistent and integrated user interface. A main
script dialog can combine initial object selection and parameter settings, and
other dialogs can be used for additional settings and presenting results. Custom
dialog windows can include push buttons, menus, lists, and other components
that you are familiar with in the
TNTmips user interface. You can
create dialogs with a drawing can-
vas to show graphic results or
dialogs incorporating views of the
resulting geospatial data. The Tu-
torial booklet Building Dialogs in
SML provides a complete over-
view of procedures and
techniques for creating and using
your own custom dialog windows.

Custom dialog window for the sample script
PanSharpComp.sml.

The intial custom
dialog window for
the RasterIntervals
sample script is
used to select the
input raster and set
initial parameters.
Other windows
show preliminary
results and allow
them to be adjusted.

page 27

Writing Scripts with SML

Script Development and Editing
The Edit menu in the SML Editor window provides
several options that let you navigate through a long,
complex SML script. Use the Find option to search
for a particular text string (such as a function name).
The Find Again option repeats the previous search,
allowing you to step through multiple instances of
the search text. The Go to Line option moves the
cursor to the designated line number in the script.

The easiest way to develop an SML script is to adapt
an existing script to the intended new task. Many
sample SML scripts are distributed with the TNT
products, providing examples that process various
types of spatial data and associated attributes. You
can also use any of the examples from this tutorial
booklet as starting points for your own scripts.

You can open two SML script editing windows side
by side and use the SML copy and paste functions
to copy sections of code from an existing script into
the script you are developing. You can access the
SML cut, copy, and paste functions from the Edit
menu on the SML window or from a pop-up menu
that opens when you press the right mouse button
(with the cursor within the editing pane). These
SML functions use the operating system's clipboard,
so you can also cut and paste text between the SML
editor and another text editor.

STEPS
keep the script from the
previous exercise open
choose Find from the
Edit menu in the SML
Editor
in the Find window enter
“Popup” as the text to
search for and press
[OK]
choose Edit / Find Again
choose Edit / Go to Line,
enter 4 in the Prompt
window, then press
[OK]
open another instance
of the SML window with
Process / SML / Edit
Script
move the new SML
window so it does not
obscure the first one
select several lines of
code from the first script
use the Copy and Paste
options on the Edit
menus to copy the
selected section to the
new script
choose File / Exit for the
new script window and
do not save changes

You can copy and paste code from one SML
Editor window to another.

page 28

Writing Scripts with SML

Preprocessor Commands and Debugging
STEPS

select File / Open and
select DEBUG.SML from the
SML directory
scroll through the script
to see how the
preprocessor
commands are used
[Run] the script,
following the steps on
page 5
examine the values
printed to the Console
Window

The SML preprocessor
directives can be inserted
from the Keyword list in the
Script Reference window:

$ifdef
$define
$include
$ifndef
$else
$endif
$warnings
$import

The SML process includes a set of preprocessor
directives that are interpreted before all of the regu-
lar script statements. Preprocessor directives allow
you to set up alternative script modes and to call up
other scripts.

While you are developing a complex script you might
want to have a "normal" mode of execution and a
"debug" or “test” mode. In debug mode the current
values of variables would be printed to the console
at various points in the script to help you verify
correct execution of intermediate steps and/or iden-
tify points of failure. You can set up the debugging
mode using the $define directive to indicate your
debug keyword

Note that preprocessor
statements are not followed
by a semicolon.

and bracket all of your sets of debug statements
with the following pair of directives:

$ifdef DEBUG
[series of print statements]

$endif

To run the script in the normal mode you would
simply comment out the single $define statement,

deactivating all of
your debugging
code but leaving it
in place for later

use. The script in this exercise is a version of the
VIEWSHED script that illustrates the use of printf()
statements in a debug mode.

You can have a script read and execute another SML
script by using the $include directive:

$include "another.sml"

The included script should be in the same directory
or Project File as the parent script. If you have sev-
eral scripts that need to use the same user-defined
function, the function definition can be in a sepa-
rate script that you "$include" in the other scripts.

$define DEBUG

page 29

Writing Scripts with SML

SML Debugger and Script Timing
The SML Debugger window provides a specialized
script execution environment designed to help you
analyze and debug a complex script. Icon buttons
on the window let you run the script as usual or step
through it one statement at a time. As the script
executes, a blue arrow symbol moves down in the
left column of the window to show the current ex-
ecution step. You can also insert temporary break
points by clicking in the left column of the window.
Execution of the script stops automatically when-
ever a break point is encountered. You can restart
execution after the break using the Run or Step icon
buttons. You can remove a breakpoint by clicking
on its symbol.

The SML Debugger window can also show the ex-
ecution time (in seconds to hundredth-second
accuracy) for each script step. For user-defined
functions and procedures, cumulative times for one
or more function calls are shown with the function
definition, not where it is called in the script. You
can use this tool to determine whether you can im-
prove the speed and efficiency of your script.

STEPS
select File / Open and
choose WHILEFOR.SML from
the SML directory
select File / Debug
in the SML Debugger
window, press
the Show Pseudo
Code icon button,
examine the code, then
press again to restore
the normal script view
scroll down to the
print("#####")
statement and left-click
in the left column
(yellow) to place a
break point (red symbol)
next to it
press the Run
icon button in the
Debugger window; note
the blue arrow indicator
stops at the break point
click on the break point
to clear it
press the Show
Timing icon button
press the Step
icon button ten
times; note the repeat of
the "for" loop
press the Stop
icon button
close the SML Debugger
window using the X
icon button in the
window title bar

Execution times
are shown in the
expanded left
column. Times
less than .005
second are
shown as 0.00.

Click in the left
column to place a
temporary break
point where script
execution will
automatically stop.

Turn on the Show Pseudo Code icon button to
expand the script view to show pseudo assembly
code generated for each script statement.

page 30

Writing Scripts with SML

Toolbars and the SML Custom Menu
You can select and run any SML script without open-
ing the SML editor window by selecting SML / Run
from the Process menu. You can also add frequently-
used SML scripts to the TNT main menu. Simply
create a directory named custom in your main TNT

directory. Each script you place in this
directory then appears as an entry on a
Custom menu on the TNT main menu.

Scripts in subdirectories in the custom directory
appear on submenus on the Custom menu. Select-
ing a script from the menu runs the script.

You can also assign SML scripts to icons on cus-
tom toolbars. Use the Toolbar Editor window to
create or select a toolbar, set a horizontal or vertical
orientation, and set up label positions. Then select
one or more SML scripts and edit the Label and
Tooltip text boxes as illustrated to establish the in-
terface text for each. Press the Icon button to select
an icon for each script. The steps in this exercise
create a new SML toolbar with two script icon but-
tons.

The Custom menu
cascade lists the
scripts in the CUSTOM

directory in your TNT
installation directory.

STEPS
choose Tools / User
Toolbars / Edit from the
TNTmips menu
press [New] in the
Toolbar Editor window
edit the Name field to
read "SML Toolbar"
select Horizontal from
the Orientation menu
click [Add SML...]
select SML / VIEWSHED.SML

click [Icon...] and select
an icon
repeat the previous two
steps for SML /
SOILTEST.SML

click [OK] to finish

Use the Toolbar Editor to
add VIEWSHEDand SOILTEST

icons to a new SML
toolbar.

page 31

Writing Scripts with SML

Using Arrays and Matrices
STEPS

select File / Open and
select ARRAY.SML from the
SML directory
examine the script and
its comments
click [Run] to execute
the script
examine the statements
printed to the Console
Window

Numeric arrays are implemented as a variable type
and can be either one-dimensional or two-dimen-
sional. When you declare an array you must specify
the size of the array with a statement in the form:

array numeric arrayName[cols];
array numeric arrayName[rows, cols];

Position within an array row or column is indicated
by a subscript index number, with the first item de-
noted by index 1:

x = testArray[1]

Arrays are commonly used
in SML scripts to store lists
of vector element numbers,
line vertex coordinates, and
the like. You can resize an
existing array using the func-
tions ResizeArrayClear()
(which sets all values to 0)
or ResizeArrayPreserve()
(which preserves existing values when the array is
expanded). Some SML vector functions that return
a list of element numbers or vertex positions to an
array automatically expand the array size as needed.

The MATRIX class implements a numeric matrix,
which is always two-dimensional. You specify the
matrix size as follows:

class MATRIX matrix;
matrix = CreateMatrix(rows, cols);

Matrix item values must be set and read using the
SetMatrixItem() and GetMatrixItem() functions in the
Matrix function group. Unlike arrays, indexing of
matrix row-column positions begins with 0 rather
than 1 (a three-column matrix would have columns
0, 1, and 2). The Matrix function group and Matrix
class also include methods for inverting, transpos-
ing, and performing arithmetic operations on matrices.

in the Script Reference
window examine the
documentation for the
MATRIX class and Matrix
function group

page 32

Writing Scripts with SML

Stringlists and the DATETIME Class
STEPS

examine the last part of
the ARRAY.SML script from
the previous exercise,
which implements and
uses a stringlist
note the methods for
reading values from the
stringlist
in the Script Reference
window examine the
documentation for the
STRINGLIST class
select File / Open and
select DTSTRINGS.SML from
the SML directory
click [Run] to execute
the script

The sample script introduced in the previous exer-
cise also demonstrates the use of the STRINGLIST
class, which is a structure to hold a list of text strings.
Strings can be set or retrieved by their numeric posi-
tion in the list using the SetString() and GetString()
class methods; stringlist positions are indexed be-
ginning at 0. You can also use array subscript
notation to access strings in a stringlist.

The STRINGLIST class also includes methods to
add strings to the front or end of the list, to remove
a string, to remove duplicates, to swap two strings,
to sort the list alphabetically, and to clear the list.
The second example script for this exercise uses a
stringlist to store the names of the months of the

year to be retrieved us-
ing the number of the
month.

This second script also
demonstrates the use of
the DATETIME class, a
structure for storing and
converting dates and
times. This class in-
cludes a number of
methods to set date and
time using different stan-
dards and formats. The

SetCurrent() method sets the date and time auto-
matically from your computer’s operating system,
which in most cases is a local time. You can use the
ConvertToUTC() method to convert a local time to
Coordinated Universal Time, the international stan-
dard. You can set or retrieve dates in several numeric
formats: as an integer designating the date as
YYYYMMDD, or as a Julian date (the number of
days since January 1, 4713 BC Greenwich noon in
the Julian calendar, a system introduced by astrono-
mers to provide a uniform system of dates).

scroll through the script
to see how the stringlist
is created and used
in the Script Reference
window examine the
documentation for the
DATETIME class
scroll through the script
to see how the
DATETIME class
methods are used

page 33

Writing Scripts with SML

Working with Text Strings
Text strings can be represented either by a string
variable (the earliest representation in SML; see page
9) or by an instance of class STRING. Nearly all
functions and class methods that take or return a
text string now specify a class STRING, but you can
pass them either a string variable or instance of class
STRING. The sample script introduced in the previ-
ous exercise includes a number of examples of
manipulating text strings.

The String function group includes
a number of functions for process-
ing text strings. The sprintf()
function can be used to create pre-
cisely formatted text, to convert
numeric values to strings, and to
concatenate strings. The
GetToken() function allows you to
manually parse text using one or
more delimiter characters.

The STRING class includes an even
wider array of methods, including
inserting, replacing, and removing
a range of characters, extracting a
substring using either beginning
and ending positions or beginning
position and length, and truncating
the string. Character positions in a
string are indexed beginning with 0.

The STRING class also includes the + operator that
allows you to manually concatenate strings, and logi-
cal operators (==, !=, <. >, <=, >=) for comparing the
length and content of two strings. As shown in the
illustration, you can also create text strings that in-
clude numbered placeholders ($1, $2, $3, etc.) and
use the insertion operator (<<) to substitute the de-
sired text. Each use of the insertion operator replaces
the lowest-numbered remaining placeholder with the
designated text.

STEPS
in the Script Reference
window, examine the
functions in the String
function group
examine the methods
and operators in the
STRING class

The insertion operator can
be used to sequentially
insert the desired text
strings, replacing numbered
placeholders.

page 34

Writing Scripts with SML

Using the HASH Class
STEPS

select File / Open and
select HASH.SML from the
SML directory
examine the script and
its comments
in the Script Reference
window examine the
documentation for the
HASH class
click [Run] to execute
the script

The HASH class implements a structure somewhat
similar to an array, except that a key is associated
with each value in the structure. The key functions
as a category label for each value. Any non-null
string or numeric value can be used as a key. In
addition, the values in a HASH are not restricted to
numeric values, but can also be instances of any
class. An instance of the HASH class thus is not
declared directly. Instead a hash is constructed by
declaring a variable or class instance followed by a
pair of square brackets:

numeric countingHash[];
class COLOR colors[];
class RVC_OBJITEM objItemList[];

Values are set or read
from a hash like an ar-
ray, using the key
values as subscripts.
The class also in-
cludes a method to get
the list of keys from
the hash as a stringlist,
which you can use to
iterate through the
hash keys. It also in-
cludes methods to
delete a particular key,

to clear the hash, and to get the type
of class in the hash.

The sample script for this exercise
uses a hash to count the frequency

of occurrence of the letters a, b, c, and d in a stringlist
containing single-letter strings. The script gets each
letter in the stringlist and increments the count in
the hash for that key using the statement

++countingHash[key];

The key is automatically added to the hash if it does
not yet exist.

A hash could also be used
to sum attribute values for
vector elements in different
categories (such as
polygon areas for different
soil types in a vector soil
map, for example).

page 35

Writing Scripts with SML

Working with Text Files
STEPS

select File / Open and
select TEXTFILES.SML from
the SML directory
examine the script and
its comments
in the Script Reference
window examine the
functions in the File
function group
click [Run] to execute
the script

The files in the File function group allow an SML
script to read text from and/or write text to a text file.
For example, you might want a complex processing
script to produce a log file that records all of the
status information that you also direct to the SML
Editor’s Console window.

The fopen() function is used to open a text file for
reading or writing and return an instance of class
FILE. This function requires a filename string that
includes the full direc-
tory path. If the
desired text file is in
the same directory as
the SML script, you
can use the CON-
TEXT class to
construct the required
directory path. A
CONTEXT class in-
stance called _context
is automatically cre-
ated by any SML
script; the class mem-
ber _context.ScriptDir
records the path to
the script directory.

The sample script
reads the sample text
file line by line using
the fgetline$() func-
tion. There are also functions to read
individual numbers, strings, and bytes from a
file. For relatively short text files you can use
the TextFileReadFull() function to read the en-
tire file to a string variable.

The File function group also includes fprint() and
fprintf() functions to write strings to files; their syn-
tax is similar to the print() and printf() functions.

page 36

Writing Scripts with SML

Coordinate Reference Systems
STEPS

select File / Open and
select CRS.SML from the
SML directory
examine the script and
its comments
in the Script Reference
window expand the
Spatial Reference (SR)
entry in the class list
examine the
documentation for the
SR_COORDREFSYS
class

SML scripts that access map locations from a spa-
tial object usually must deal with the object’s
Coordinate Reference System (CRS). SML classes
associated with spatial referencing are found in the
Spatial Reference (SR) class group.

Class SR_COORDREFSYS defines a complete coor-
dinate reference system. The coordinate system,
datum, and projection information in a CRS are rep-
resented, respectively, by the SR_COORDSYS,
SR_DATUM, and SR_COORDOPDEF classes.
There is a class member in SR_COORDREFSYS for
each of these three classes.

A complete CRS (or any of its component classes)
can be assigned using a text string with an identifier
for that spatial referencing component. Some com-
ponents have text identifiers that are self-describing,
as in the case of the WGS84 / Geographic CRS set
up in the first part of the sample script:

class SR_COORDREFSYS latlonCRS =
"Geographic2D_WGS84_Deg";

The assignment can be done as part of the class
declaration, as above, or after the class is declared
using the Assign() method on each SR class. The
reference documentation for the Assign() methods
lists the long text identifiers available for each.

The identifier for a CRS or its components can also
be a text string consisting of an ID number preceded
by the codespace for this identifier, as in:

utmCRS.CoordSys = "EPSG:4400";

EPSG stands for European Petroleum Survey Group,
which maintains a widely-used database of spatial
reference components. The supported codespaces
are listed in the documentation for the GetID()
method on each of the SR classes. Internal
MicroImages ID codes can be used without naming
the codespace:

projectDef.Method = "1909";

MicroImages code numbers
for coordinate reference
systems and their
components can be found
on the Details tabbed panel
of the Coordinate Reference
System window (see the
Coordinate Reference
Systems tutorial). You can
use the utility script
CRSgetID.sml in the SML
directory to interatively
select a CRS and return its
MicroImages and EPSG ID
codes.

page 37

Writing Scripts with SML

Coordinate Transformations
STEPS

in the Script Reference
window examine the
documentation for the
TRANS2D_MAPGEN
class
click [Run] to execute
the script
enter latitude and
longitude values in the
Prompt windows as
shown below

The sample script introduced in the previous exer-
cise illustrates a common task in SML scripts:
transforming point coordinates from one Coordinate
Reference System to another. To simplify the ex-
ample, no spatial objects are used; the script simply
converts the entered latitude/longitude coordinates
(referenced to the WGS84 datum) to UTM coordi-
nates. The appropriate UTM zone is computed
automatically from the entered location.

Class TRANS2D_MAPGEN is used to set up and
perform coordinate transformations. The class in-
cludes methods to assign input and
output coordinate reference systems. It
also includes methods to perform forward
or inverse transformations on 2D points,
3D points, and extents rectangles (class
RECT). In this example the input CRS
for the transformation is WGS84 / Geo-
graphic, while the output CRS is
WGS84 / Transverse Mercator.

TRANS2D_MAPGEN and the spatial
referencing (SR) classes in SML re-
place and extend the earlier classes
TRANSPARM (now deprecated) and
MAPPROJ.

Because some parameters of the
Transverse Mercator projection used in
the UTM system are specific to the UTM
zone, this sample script sets all of the
projection parameters individually. The
resulting coordinate system and
projection are equivalent to that of the
corresponding UTM zone, but are not
identified as “UTM zone 14N” in the CRS
description printed to the console. In a
script with a fixed output CRS using a
UTM zone, you can set the defined
projection (SR_COORDOPDEF) for the
UTM zone at once using its identifier in
any supported codespace.

page 38

Writing Scripts with SML

Object and Map Coordinates
STEPS

select File / Open and
select OBJMAP.SML from the
SML directory
examine the script and
its comments
[Run] the script
when prompted for an
input raster, choose DEM

from the VIEWSHED Project
File in the SML directory
when prompted for an
input vector, choose
VPATH from the VIEWSHED

Project File
examine the information
printed to the console

Raster object DEM and the
line in vector object VPATH.

Georeferenced spatial objects have two distinct
types of coordinates for indicating positions within
the object: object coordinates and map coordinates.
Object coordinates are the values stored internally
with the object that record the positions of its ele-
ments. For a vector or CAD object that was created
by digitizing a drawing, for example, the object coor-
dinates would be the arbitrary x and y coordinates
of the digitizing tablet or computer screen. For a
raster object, the object coordinates of a cell are its
raster column (x) and raster line (y) number.

The map coordinates for an object are coordinates
in the Coordinate Reference System assigned in the

object’s georeference. Map coordinates can be
computed as needed in the TNT products from
the corresponding object coordinates using pa-
rameters stored in the georeference subobject.

The RVC_GEOREFERENCE class includes a
GetTransParm() method to get the transforma-
tion parameters between object and map
coordinates as a TRANS2D_MAPGEN. You can
then use the methods on this class to transform
coordinates between these two systems. The
sample script for this exercise reports object and
map coordinates for the corners of a raster ob-
ject and for the start and end nodes of a line in a
vector object.

In many cases, the object coordinates of a geomet-
ric object (vector, CAD, shape, or region) are

equivalent to its map coor-
dinates. This is indicated by
a georeference type of “Im-
plied”. However, an SML
script should not assume
that object and map coordi-
nates of input geometric
objects are identical.

page 39

Writing Scripts with SML

Raster Objects

Scaled ratio raster (left)
produced by RATIOSCL.SML from
CB_TM / RED (center) and CB_TM /
PHOTO_IR (right).

STEPS
select File / Open and
select RATIOSCL.SML from
the SML directory
study the script
structure and statement
syntax
run the script
when prompted for a
raster for N, select
PHOTO_IR from the CB_TM

Project File in CB_DATA

select RED from the CB_TM

Project File for input
object D
create a new raster
object for RATIOSCL

for this exercise and
those on the following
pages, use the Display
process to display the
input object(s) and the
new object(s) created
by the script

A full set of raster functions let your SML scripts
read, create, and analyze raster objects. You can write
mathematical expressions to compute values for a
new raster object from one or more input rasters or
use various higher-level SML functions to create new
raster values.

Use the GetOutputRaster() and CreateRaster() func-
tions to create new raster objects. When you create
an output raster object, give some thought to your
choice of the specifics of its data type: binary, inte-
ger, signed, unsigned, and floating point. For
example, if your script's computations can create
negative output cell values, be sure to specify a signed
data type. Several functions provide access to ras-
ter subobjects.

The RATIOSCL sample script is designed to compute
the ratio between two raster image bands (assumed
to be 8-bit unsigned rasters) and rescale the result
to the 8-bit unsigned data range for the output ras-
ter. The raw ratio values could range from .004 (1 /
255) to 255, and separate scaling is applied for
ratios less than or greater than 1. The scale factor
for the upper range is based on the
maximum ratio value for the entire
image area. This necessitates stor-
ing the raw ratio
values in a tempo-
rary floating point
raster, computing
the scale factor
from the maximum
ratio value, then
computing the
rescaled values
and writing them
to the final output
raster.

page 40

Writing Scripts with SML

Vector Objects
STEPS

select File / Open and
select VECTOROPS.SML from
the SML directory
study the script
structure and statement
syntax
run the script
when prompted, select
input vector objects
SECTIONS and STREAMS

from the VECTORDATA

Project File in the SML

directory
create a new vector
object for the output
enter 22 in the popup
dialog that prompts for
the section number
enter 2 in the popup
dialog that prompts for
stream order

SML scripts can also read, process, and create vec-
tor objects. A large set of functions for processing
vector objects can be found in the Vector function
group. The Vector Network and Vector Toolkit func-
tion groups provide more specialized vector
functions.

An SML script is a great way to automate a series of
processing steps that would require using separate
processes if run interactively in TNTmips. The
sample script for this exercise illustrates this con-
cept. It starts with two input vector objects. One
has polygons for numbered square-mile sections in
a township, and the other has stream lines attrib-
uted with stream order data (numbers indicating the
ranking of individual stream lines within the stream
network hierarchy). The script creates an output
vector object with stream lines for a selected sec-
tion, with the selected minimum stream order, and

reprojected to a different coordi-
nate reference system.

The script uses three main func-
tions to perform these operations.
The VectorCopyElements() func-
tion is used to copy the section
polygon (selected by query) to a
temporary vector object. This
temporary vector is used as the
“operator” vector in the
VectorExtract() function to extract
and clip the stream lines (selected
by query) for this section to a sec-
ond temporary vector object.

Finally, the VectorWarp() function is used to reproject
this temporary vector to the WGS84 / Geographic
CRS in the output vector object. The script also
shows how you can obtain the georeference infor-
mation and CRS for a spatial object and set up the
TRANS2D_MAPGEN needed for the reprojection.

page 41

Writing Scripts with SML

Using the Vector Toolkit
STEPS

select File / Open / *.SML
File and open the script
VTOOLKIT.SML from the SML

directory
study the script
structure and comments
run the script using
raster DEM from the
BUBBSCK Project File in the
SML directory as input

Raster DEM and the vector
object created from it by
the sample script.

The functions in the Vector Toolkit function group
enable a script to modify elements in an existing vec-
tor object or add new elements to an object. To
modify an existing vector object, the script must first
initialize the vector toolkit for use with that object:

GetInputVector(V);
VectorToolkitInit(V);

[Editing operations with vector
toolkit functions]

CloseVector(V);

When you will be adding elements to a new output
vector object, toolkit initialization can be done when
the object is created. The second argument to the
GetOutputVector() function is an optional flag string
that can be used to set the topology level and to ini-
tialize the vector toolkit. For example, setting this
argument to "VectorToolkit,Polygonal" initializes the
vector toolkit and establishes polygo-
nal topology for the vector object.

The sample script VTOOLKIT.SML shows
how some of the vector toolkit functions
can be used to create elements in a new
vector object. The script first opens an
input raster and finds its geographic ex-
tents and the map position of the cell
with the highest value. The script then
creates a new vector object with implied
georeference to the coordinate reference
system of the raster object and adds a
vector line outlining the raster’s rectan-
gular extents. The location on this
boundary line that is closest to the maxi-
mum cell point is then found, a line is
added connecting these two locations. A point ele-
ment is also added at the position of the maximum
cell value. The vector object is then validated (to
check topology and compute standard attributes)
and closed.

This sample script also
illustrates the use of the
POLYLINE class, a structure
for making and manipulating
lines with any number of
vertices.

page 42

Writing Scripts with SML

Regions
STEPS

select File / Open / *.SML
File and open the script
REGION.SML from the SML

directory
study the script
structure and comments
run the script using for
input the region objects
POLYREGION and RECTANGLE

from the SML / REGION

Project File and vector
object ELEV_PTS from the
SURFMODL / SURFACE Project
File

A region is a simple spatial object that represents
the outline of an area of interest. In an SML script
you can open an existing region object from a Project
File or create temporary regions in many ways from
other spatial objects (from the object’s extents, from
selected polygons, etc.). The script can then use
these regions to operate on other spatial objects
(test for inclusion, extract, etc.).

The REGION2D class includes methods for testing
whether a point, line (class POLYLINE), rectangle
(class RECT), or another region overlaps or is con-
tained within the current region. There are also
methods for obtaining the intersection, subtraction,
or union of the current region with a polyline, rect-
angle, or another region (the current region is
replaced by the result of the operation, so you don’t
have to create an additional region variable).

SML provides a simple way to use a region object
to restrict actions on a raster object. The simple
construction

for each RastVar in RegionVar {
[actions]

}

restricts the actions to raster cells that lie within the
region boundaries. This construction provides a
simpler alternative to using values in a binary mask

raster to control the
operations.

The sample script
REGION.SML opens two

region objects and finds their intersection. This new
temporary region is then used to select points from
a 3D vector object for examination and find the point
with the maximum elevation (Z value).

The Region function group
contains functions to open
and save region objects

The REGION2D class in SML
represents a region that has
been created in memory by
some SML function or class
method. Class REGION
(derived from REGION2D)
represents a region object in
a Project File.

page 43

Writing Scripts with SML

STEPS
select File / Open /
*.SML File and open the
script SML / CAD.SML

examine and then run
the script using raster
object DEM from the
BUBBSCKProject File in the
SML directory

open the script SML /
TIN.SML

study and then run the
script, using object
ELEV_PTS from the SURFACE

Project File in the
SURFMODL directory for the
input

CAD object created by
CAD.SML displayed over input
raster DEM

SML includes classes and functions to support CAD
and TIN object creation, reading, writing, and ma-
nipulation. Sample script CAD.SML uses some of the
numerous CAD functions. The script uses a raster
object as input to define geographic extents and
georeferencing and creates a new georeferenced
CAD object to which several elements are added. A
circle element is drawn centered at the geo-
graphic center of the raster, then a line element
is drawn from the center to the circumference
of the circle. Several box elements are then
added around the center point.

Sample script TIN.SML illustrates some of the TIN
functions. It uses the TINCreateFromNodes()
function to make a new TIN object from arrays of
node coordinates. The coordinate arrays are cre-
ated in this case by reading the coordinates of points
in a 3D vector object. The script also uses func-
tions to read the number of TIN hulls, edges, and
triangles.

TIN object created from vector
points using sample script TIN.SML

CAD and TIN Objects

page 44

Writing Scripts with SML

Shape Objects
The RVC_SHAPE class represents a shape object in
SML. A shape object in a Project File links to an
external shapefile or to spatial data stored in an ex-
ternal database (such as Oracle Spatial, PostGIS,
MySQL Spatial, or an ESRI Geodatabase). The
RVC_SHAPE class provides methods to read point,
line, or polygon elements from a shape object for a
particular element number. Shapefiles support multi-
element constructs (more than one point, line, or
polygon associated with the same record and ele-
ment number), so the class methods for reading
shape elements are structured to account for this
possibility. The ReadPoints() method returns a
polyline with vertices corresponding to the points
for that element number; if there is only one point, it
returns a degenerate polyline with only one vertex.
The ReadLines() method returns an array of polylines
(one for each line assigned to the element). The
ReadPolygons() method returns a single region ob-
ject created from the one or more polygons
associated with the current polygon number.

The sample script for this exercise opens a shape
object consisting of polygons (each corresponding
to a separate element) outlining map quadrangles.
It gets the region for each polygon and uses the
UnionRegion() method of class REGION2D to add
that region to an “accumulator” region. At the end,
the “accumulator” region outlines the outer bound-
ary of the set of quadrangle polygons, and this region
is written to an output region object.

STEPS
select File / Open / *.SML
File and open the script
SHAPE.SML from the SML

directory
study the script
structure and comments
run the script using for
input the shape file
QUADS.SHP

Input shape object with
quadrangle boundary
polygons

Region created by
the SHAPE.SML script

page 45

Writing Scripts with SML

Reading Values from Database Tables
STEPS

open the sample script
DB_READ1.SML from the SML

directory
study the script
structure and comments
run the script using
object HSOILS from the
HAYWSOIL Project File in
the SF_DATA directory for
input

SML scripts can read and utilize attibute values from
database tables associated with spatial objects. The
simplest syntax for reading attributes is an exten-
sion of the TABLENAME.FIELDNAME construction used
in queries. In an SML script that reads attributes
attached to vector or TIN elements, a database field
reference must also specify the spatial object, the
element type (a separate database subobject is main-
tained for each type of element), and the element
number. The database field reference has the fol-
lowing form:

DB_READ1.SML reads
values from the ACRES

field of the SOILTYPE table
and the SOILNAME field of
the WILDLIFE table.

num = Vect.poly[i].table.field;
string$ = Vect.point[i].table.field$;

object variable element type element number

The sample script for this exercise loops through all
of the polygons in a soil map vector object and reads
the Acres numeric field in the SoilType table and the
SoilName string field in the Wildlife table:

for i = 1 to V.$Info.NumPolys
{
acres = V.poly[i].SoilType.Acres;
type$ = V.poly[i].Wildlife.SoilName$;

These values are
printed to the con-
sole window along
with the element
number.

The vector object element type in this construct can
be poly, line, point, or node. TIN object element
type can be triangle, edge, or node.

If there are multiple records attached to
the element, the expressions above re-
turn the field value from the first attached
record. To refer to the Nth attached record,
use the following form:

Note that if the field being
read is a string field, you
must append the “$”
character to the end of the
field reference.

num = Vect.line[i].table[N].field;

page 46

Writing Scripts with SML

Using RVC DATABASE Classes
STEPS

in the Script Reference
window examine the
documentation for the
Database classes in the
RVC SYSTEM class
group
open the sample script
DB_READ2.SML from the SML

directory
study the script
structure and comments
run the script using
object HSOILS from the
HAYWSOIL Project File in
the SF_DATA directory for
input

The simple syntax presented on the previous page
for reading database information cannot be used for
CAD and Shape objects. Database-related classes
in the RVC System group allow you to work with
attributes of all types of spatial objects and are inte-
grated with the RVC object classes. The RVC
database classes also provide a highly structured
and rigorous approach to reading and writing data-
base information. The Database group within RVC
System includes classes for databases attached to
different types of spatial elements (such as
RVC_DBASE_POINT and RVC_DBASE_CAD), the
RVC_DBTABLE class that represents a database
table, and the RVC_DBTABLE_RECORD class that
provides a container for the contents of a record.
Other classes in RVC System represent a record num-
ber and the spatial element a record is or can be
attached to.

The script in this exercise replicates the same task
as the DB_READ1 script in the previous exercise, but
using the RVC System classes. For each soil poly-
gon the script sets the element number for an
instance of class RVC_ELEMENT and uses a method
on class RVC_DBASE_POLYGON to get from the
SoilType and Wildlife tables the record numbers of

the records attached to this element. The
results from each table are returned to an
array of class RVC_RECORDNUM (since
in general there may be more than one
attached record). These record num-
bers are then used to read the contents
of the corresponding record from each
table to an instance of class
RVC_DBTABLE_RECORD. A method
on this class is then used to read (by
field name) the values in the Acres field

in the SoilType table and the SoilName field in the
Wildlife table. These values are read to script vari-
ables and then printed to the console.

page 47

Writing Scripts with SML

Creating an Element Database
STEPS

open the sample script
DB_WRITE1.SML from the
SML directory
study the script
structure and comments
run the script using
object CBSOILS_LITE from
the CB_SOILS Project File
in the CB_DATA directory
for input
open the sample script
DB_WRITE2.SML from the
SML directory
study the script
structure and comments
run the script using the
same vector object for
input

Sample scripts DB_WRITE1 and DB_WRITE2
create a new vector object with points
located at the centroids of the polygons in
the CBSOILS_LITE input vector. A record is
created for each unique soil class in the
input, populated with selected soil
attributes, and attached to the relevant
points.

The two sample scripts in this exercise demonstrate
two approaches to creating a new database and table
in an output vector object, writing records with at-
tributes read from the input object, and attaching
these new records to the appropriate elements.
DB_WRITE1 uses functions in the Database function
group and corresponding classes. DB_WRITE2 uses
the more recent RVC System classes and their meth-
ods to perform the same tasks.

The scripts use the CBSOILS_LITE vector object as
input and create an output vector object with a point
at the centroid position of each soil polygon. These
points are attributed with selected values from the
input Class table (directly attached to the polygons)
and other related tables. Because many records in
the Class table are attached to more than one poly-
gon, the scripts iterate through the Class table
records to get the desired attributes from this table
and from the related records in the other input tables
and create a record in the output vector point data-
base with these values. In addition, for each Class
record the scripts get the list of attached soil poly-
gons and iterate through these polygons to create
the centroid point and attach the current new soil
data record to each. Thus the output table contains
no duplicate records.

The CBSOILS_LITE vector
object includes 212 soil
polygons assigned to 48 soil
classes. Some records in
the Class table are thus
attached to more than one
soil polygon.

page 48

Writing Scripts with SML

Converting Objects
One common rationale for creating an SML script is
the desire to automate a multi-step processing se-
quence that needs to be performed repetitively on a
number of different input datasets. The ability to
convert geospatial data from one type to another
within SML gives you great flexibility in designing
such a script. The standard TNTmips data conver-
sion processes lead the industry in support for data
types and functionality. Many of these conversion
processes are available as functions in SML in the
Object Conversion function group. Other special-
ized conversion functions in the Surface Fitting group
interpolate a raster surface from a vector or TIN in-
put object.

The SOILTEST.SML sample script automates the pro-
cessing of soil sample data and uses several types of
object conversion functions. The script reads a se-
ries of soil chemistry values stored in a database table
attached to input vector point elements representing
sample locations. For each type of value (soil pH,
organic matter content, and others) the script uses a
surface fitting function to create a surface raster. In
intermediate steps the script uses a vector polygon
representing the field boundary to create a blank ras-
ter to use as a mask for each surface. It also creates

a region from
the polygon
and uses the
region to
write the
value 1 into
every cell in
the mask ras-
ter that lies
inside the
field bound-
ary.

STEPS
open the sample script
SOILTEST.SML from the SML

directory
study the script, then run
it using objects in the SML

/ SOILTEST Project File for
input. Use object SAMPPTS

for the "Points" and
object BOUNDARY for
"Boundary"
accept the default values
for the other parameters
requested by popup
dialog windows

Soil test
sample
points

Field
boundary
polygon

Computed soil pH
surface raster

Computed soil
organic matter
surface raster

page 49

Writing Scripts with SML

Sample Script: Extract Polygons
STEPS

choose File / Open /
*.SML File and select SML

/ TIGER1.SML

study the script
structure and comments

The sample script TIGER1.SML provides an example of
vector and database processing in SML. It extracts
specified lines from an input vector object, writes
them into an output vector object, and transfers in-
put line attributes to output polygon attributes.

TIGER1.SML was designed to process vector ob-
jects imported from TIGER line files (2000 version)
produced by the United States Census Bureau.
TIGER geodata is organized by county, and in-
tegrates line geodata of many types (hydrology,
roads, administrative and census boundary lines)
into one vector data layer. Topological poly-
gons result from the intersection of these various
line types, but individual polygons have little
geographic meaning. Area attributes are coded
only as attributes of the left and right sides of
lines. This characteristic of TIGER data makes it
difficult to access and display areal information
using the raw vector objects.

Area boundary lines in the TIGER vector, such as
city and town boundaries, can be identified by the
inequality of particular attribute values on either side
of the line. This script finds city boundary lines
in an input TIGER vector object and writes each
line to a new output vector object. When all line
elements for a particular city boundary have been
transferred, they intersect to form a polygon in
the output vector. If the current line completes a
new polygon, the city name is read from the in-
put line database and a new polygon database
record containing the name is created for the
output vector. A multi-input version of this script
has been used at MicroImages to process all of
the 93 county TIGER vector objects for the state
of Nebraska to produce a single statewide city
polygon object.

TIGER vector for a single
county with lines styled
based on their attributes.
TIGER files are available for
free download at
 www.census.gov.

Extracted city polygons for
the same county, with labels.

More about the extract polygon script is available in an online document at

http://www.microimages.com/documentation/cplates/65smltiger.pdf

page 50

Writing Scripts with SML

Sample Script: Network Routing
STEPS

choose File / Open /
*.SML File SML /
NETWORK1.SML

study the script structure
and comments
run the script using
objects FARMS, PLANTS,
and ROADS from the SML /
NETWORK1 Project File

Sample result from the
network script. Farm
locations (circles) have been
styled in the same color as
the processing plant location
(squares) that is closest to it
along the road network.

More about the network script is available in an online document at

http://www.microimages.com/documentation/cplates/65smlnz.pdf

The sample script NETWORK1.SML shows a more com-
plex application of vector and database processing
in SML. It uses network analysis functions to ad-
dress the problem of efficient delivery of materials
from numerous dispersed locations (such as farms)
to a small number of destinations (such as process-
ing plants). The objective is to determine the
shortest network distance from each farm to each of

the processing plants, so
each farm can transport
goods to the nearest plant.
A script is required to solve
this problem because the
farm and plant locations are
represented as points in
vector objects separate
from the object containing
the road network.

For each farm and process-
ing plant, the script adds a
node to the roads object at
the closest point on the clos-
est line. It keeps track of the
element numbers of these
two sets of added nodes in
a pair of arrays so that net-

work distances can be associated with the correct
farm and plant. Network analysis functions are then
used to compute the required set of distances, which
are stored in a new database table for the vector
points representing farms. For each farm point, there
is one attached record for each processing plant,
showing the minimum network distance. This script
also uses the SetStatusMessage() function to post
process status information to the status line at the
bottom of the SML Editor.

page 51

Writing Scripts with SML

Sample Script: Devegetating Images

More about the network script is available in an online document at

http://www.microimages.com/documentation/cplates/68deveg.pdf

STEPS
choose File / Open /
*.SML File... and select
DEVEG.SML from the SMLDLG

directory
run the script
in the dialog window
that opens, press
[select NIR...], navigate
into the INYOTM Project
File in the SMLDLG

directory, and select
BAND_4
press [Select RED...]
and select BAND_3
turn on the Devegetate
NIR and Devegetate RED
toggle buttons
type “3” into the
“Number of additional
bands to devegetate”
field and press <Enter>
press [Select Bands...]
select BAND_1, BAND_2,
and BAND_5
press [Set dark pixel
values...]
press [OK] in the Set
Dark Pixel Values
window that opens
press [Select Output
File...] and name a new
Project File to contain
the output objects
press [Directory...] and
select the directory in
which TNTmips is
installed
press [OK] to start
processing

RGB displays of Bands 5, 4, and
2 (respectively) for the input (left)
and output (right) images.
Vegetation (green in left image)
has been effectively suppressed
in the output image.

This exercise provides an example of custom image
processing using SML. The sample script imple-
ments an automated procedure for suppressing the
expression of vegetation in multispectral images for
geological and soil-mapping applications. Using a
method developed by NASA researchers, near-in-
frared and red image bands (in this example, Landsat
bands 4 and 3, respectively) are used to estimate
spatial variations in vegetation abundance. The
script determines the statistical relationship between
the brightness values in each selected image band
and the vegetation index. For each band the cell
values are then adjusted so that the average band
value for each level of vegetation index is uniform
across all index levels. This method works well in
areas of open-canopy vegetation, such as arid and
semi-arid terranes, where many image cells include
both vegetation and bedrock or soil.

Since an image band may contain many cells with
the same value, the script precomputes many val-
ues that depend solely on input cell value, then
reads the computed values from the arrays as it iter-
ates through the raster cells. In addition to adjusted
image bands, the script produces a vegetation index
raster and, for each devegetated band, a raster
scatterplot of band versus vegetation index values
and a CAD object containing a graph of the
smoothed band average versus vegetation index
value.

page 52

Writing Scripts with SML

Sample Script: Processing LIDAR Points
STEPS

choose File / Open /
*.SML File SML /
LAS_GROUND.SML

study the script
structure and comments
run the script using
LIDARCLS.LAS from the SML

directory as input

Ground

Building

Low Vegetation
High Vegetation

Input LAS LIDAR file with classified
points (indicated by point color).

Output LAS LIDAR file
containing only ground points.

Extract of a natural-color
orthoimage of the area
covered by the sample
LIDAR points. A building is
surrounded by trees, a few
lower shrubs, and open
ground (grass and some
nearly bare soil).

An SML script can read, process, and create LIDAR
(LIght Detection and Ranging) point files in the stan-
dard LAS file format. TNTmips represents a linked
LAS file as a shape object. Thus the RVC_SHAPE
object class is used to work with LAS files in an
SML script.

The sample script for this exercise is designed to
process an LAS file whose LIDAR points have been
classified into ground, vegetation, building, and
other surface categories. The script makes a new
LAS file using the MakeLAS() method on the
RVC_SHAPE class, extracts the information for in-
put points in the ground classification, and writes it
to the new LAS file. The resulting ground points
file would be suitable for generating a “bare-earth”
digital elevation model (DEM) raster.

LAS files store 3D point coordinates, various
LIDAR pulse parameters, and the point classifi-
cation (if any) in a unique database record for
each point. Thus all of the information neces-
sary to define a LIDAR “point” can be copied to
an output LAS file by copying the correspond-
ing record from the main table (RVC_DBTABLE
class instance) in the input LAS file to the main
table in the output. There is no need to copy
point “elements” when working with this special
type of shape object.

page 53

Writing Scripts with SML

Using Status Dialogs
STEPS

choose File / Open /
*.SML File SML /
NETWORK2.SML

note the use of the
STATUSDIALOG and
STATUSCONTEXT
classes to implement a
status dialog
run the script using
objects FARMS, PLANTS,
and ROADS from the SML /
NETWORK1 Project File

End-users of your scripts may run them without
opening the SML Editor by choosing Script / Run
from the TNTmips menu. A script run in this manner
does not open a Console window to show the re-
sults of print statements used in the script to provide
status information, and obviously the Editor’s sta-
tus line is also not available for that purpose. If you
have designed a custom dialog for setting up and
running your script, you can use it to show status
messages (see the tutorial entitled Building Dia-
logs in SML). If you are not using a custom dialog,
you can still provide status updates to the user by
creating and using a predefined status dialog.

Two SML classes are involved in implementing a
status dialog. You create an instance of the
STATUSDIALOG class, then create a context (class
STATUSCONTEXT) for it. The context provides
methods for setting a message on the status dialog,
initializing and incrementing a
progress bar, and other dialog inter-
actions.

The script for this exercise is a ver-
sion of the vector network script
introduced a few pages ago. This
version adds a status dialog with
progress bar that is re-initialized sev-
eral times for the major script steps:
1) creating points in the road vector
for the farms; 2) creating points in
the road vector for the processing
plants; and 3) iterating through the
plants to perform a network analy-
sis between the plant and all of the
farms. In this third step the status
message is changed and the status
bar re-initialized for each plant loop,
with the bar set to increment as each
farm-plant route is computed.

Note that on a fast modern
computer this script may
process this very small
dataset too quickly for you
to observe all of the
updates made to the status
dialog.

page 54

Writing Scripts with SML

Batch File Conversion with SML
STEPS

choose File / Open /
*.SML File SML /
TIFF_TO_JP2_MIE.SML

study the script
structure and comments
run the script
in the TIFF to JP2
Conversion dialog,
press [Select TIFF Files]
and choose DK1.TIF and
DK2.TIF from the SML

directory
select an output
directory
set JPEG2000
compression options
and press [Run]

Above, dialog created by
the sample script. Below,
the two sample images
converted from GeoTIFF to
GeoJP2.

You can use an SML script to automate repetitive
tasks including importing or exporting tens or hun-
dreds of data files with the same format. TNTmips
supports the import and export of dozens of external
file formats. The program code needed to import or
export each of these formats is encapsulated in SML
as a class structure beginning with the letters "Mie".
For example, class MieGeoTIFF supports the import
or export of GeoTIFF images. (Note that files in
GeoTIFF and many other widely-used geospatial file
formats also can be used directly in the TNT prod-
ucts without requiring import.) Class members for
each Mie class allow you to set process parameters
such as raster size, compression, vector topology
type, and others. These classes can be found in the
Import/Export (MIE) class grouping.

The script for this exercise performs a
batch conversion of any number of
GeoTIFF files to GeoJP2 files with effi-
cient JPEG2000 compression. You can
choose from several JPEG2000 compres-
sion options and select an output
directory. Each GeoJP2 file is automati-
cally named for its input GeoTIFF file,
which can contain a single composite

image or any number of separate image bands. A
temporary TNT Project File is created for each
GeoTIFF file, and the MieGeoTIFF class is used to
create one or more raster objects in this temporary
file that link to the GeoTIFF file. These temporary

rasters are then ex-
ported to a GeoJP2 file
in the selected direc-
tory using the
MieGeoJP2 class.
Georeference informa-
tion is automatically
transferred to the out-
put GeoJP2 files.

page 55

Writing Scripts with SML

Running Scripts in Job Processing
STEPS

choose File / Open /
*.SML File SML /
TIFF_TO_JP2_MIE_FROMJOB.SML

study the script
structure and comments
choose File / Open /
*.SML File SML /
TIFF_TO_JP2_MIE_MAKEJOBS.SML

run the script
in the TIFF to JP2
Conversion dialog,
press [Select TIFF Files]
and choose DK1.TIF and
DK2.TIF from the SML

directory
select an output
directory
set JPEG2000
compression options
and press [Queue Jobs]

Above, dialog created by
the MAKEJOBS script. Below,
the Job Manager running a
job with the FROMJOB script
for each of the input
GeoTIFF files.

You can also use SML scripts for batch-processing
in the TNTmips Job Processing System. This al-
lows you to run several scripts simultaneously,
exploiting the processing power of your computer’s
multiple cores. To perform script-based batch job
processing requires that you separate the interac-
tive user input activities and processing activities
into separate SML scripts. The interactive script
provides the interface to choose one or more
geospatial inputs and set global processing param-
eters. This script then makes a job file for each input.
When each of these jobs is run, it calls the specified
processing script and automatically passes the pre-
defined variable values to it for execution. The
process script must include variable declarations for
all values passed from the job file. SML includes an
MIJOB class with simple methods for automatically
creating a properly-formatted job file,
adding variable definitions and values
to it, and specifying the process script
to be run. Job files are automatically
written to the TNT job directory you
have set for your installation.

For this exercise, the GeoTIFF to GeoJP2
file conversion task introduced on the
previous page has been implemented
for job processing. The interactive script illustrates
how to use the MIJOB class to create the required
job files. The processing script uses preprocessor
commands to define a test mode for testing the script
by itself, outside of the job processing environment.

page 56

Writing Scripts with SML

Pipeline Image Processing with SML
Pipeline Terminology
IMAGE: a raster object or
file consisting of one band
or color component, or a set
of co-registered bands or
color components.

STAGE: any pipeline element
that represents or
processes an image.

SOURCE: a stage that inputs
an image.

FILTER: a stage that applies
some processing or
transformation to the image.

TARGET: a stage that
represents the final output
image. Its properties are
derived from the input stage
it is connected to.

SAMPLE: the numeric value
for a particular image row/
column position and image
component.

PIXEL: the set of SAMPLES
for a particular image row/
column position for
multicomponent image.

SOURCE_RVC

FILTER_RESAMPLE

TARGET_RVC

Input

Schematic Diagram of a
Simple Image Pipeline

An image pipeline to
resample and reproject an
RVC raster image to an RVC
raster image.

MicroImages has integrated pipeline image-pro-
cessing architecture into SML, where it can be used
in combination with the wide array of other func-
tions and classes. A pipeline consists of a chain of
processing elements arranged so that the output of
each element (stage) is the input of the next. There
are three types of stages (see more complete defini-
tions in the box to the left): source (image input),
filter (processing stage), and target (image output).
Sources and targets can be raster objects in a
MicroImages Project File or files in other formats
supported for direct use in TNTgis. Filters are pro-
vided to perform a variety of operations such as
resampling, mosaicking, applying spatial filters, crop-
ping, applying a mask, and many others.

Each type of source, filter, and target is a separate
SML class with its own predefined properties and
methods (class functions). Pipeline connections are
forged when a stage class is constructed in a pipe-
line script by specifying the previous stage that
provides its input. A pipeline can have one or sev-
eral sources, but only one target. Filters can be
applied in series to one image or in parallel to mul-
tiple source images. Once the pipeline is constructed,
a single method is called on the target stage to ini-
tiate processing and pull all of the image data
through the pipeline.

Pipeline stages encapsulate their data, data proper-
ties, and operations, and they interact with each other
in simple, defined ways. This modular, object-ori-
ented design simplifies coding in SML and makes it
easy to construct, modify, or extend a processing
pipeline in a script. For example, georeference infor-
mation is an inherent property of an image in an
SML pipeline, so it is automatically pulled through
the pipeline and assigned to the target. Likewise,
pyramid tiers are automatically produced for target
rasters in Project Files.

page 57

Writing Scripts with SML

File Conversion via Image Pipeline
STEPS

choose File / Open /
*.SML File SML /
TIFF_TO_JP2_PIPELINE.SML

study the script
structure and comments
run the script
in the TIFF to JP2
Conversion dialog,
press [Select TIFF Files]
and choose DK1.TIF and
DK2.TIF from the SML

directory
select an output
directory
set JPEG2000
compression options
and press [Run]

SOURCE_TIFF

TARGET_J2K

Input

Pipeline
Schematic

As a first example, we can look at a pipeline version
of the TIFF to JPEG2000 format conversion script.
The previous script processed each image in two
stages using Mie classes: an import from TIFF for-
mat to an RVC-format raster in a temporary file, then
an export to JPEG2000. The pipeline version used in
this exercise is more efficient; pipeline source and
target classes are provided for both formats, and
the pipeline can convert each image directly with-
out the intermediate conversions to/from RVC and
without needing to manage any temporary files.

This format conversion is the simplest possible form
of image pipeline: it consists only of a source and a
target, because no other processing (filter stage)
needs to be interposed between them in this case.
The SOURCE_TIFF class reads the TIFF file and
the conversion to JPEG2000 format is handled by
the TARGET_J2K class. However, any number of
filter stages could be added if needed to provide
additional processing (such as resampling or apply-
ing contrast enhancement to the image).

Source and target classes for external image formats
are constructed using an instance of the FILEPATH
class to indicate the location of the source or target
file. Target classes for TIFF and JPEG2000 images
have auxiliary settings classes with members that
allow you to specify options for these more complex
image formats.

Pipelines are set up sequentially starting with the
source(s), since each subsequent stage must specify
its input stage. Each target class has an Initialize()
method that must be called to initialize the pipeline
and check for valid connections between all of the
stages. An error value (negative number) is returned
if there are not, and the script should check for this
condition. If the returned value is not negative, the
script can call the Process() method on the target
class to execute the pipeline processing.

Pipeline processing in SML
is described in more detail in
the following Geospatial
Scripting Technical Guides:
Pipeline Image Processing,
Pipeline Programming
Basics, Pipeline Structures
for Multiple Inputs, and
Using Regions in a
Pipeline.

page 58

Writing Scripts with SML

Resample to Match Reference via Pipeline
STEPS

choose File / Open /
*.SML File SML /
PIPELINERESAMPLETOMATCH.SML

study the script
structure and comments

SOURCE_RVC

FILTER_RESAMPLE

TARGET_RVC

Input

SOURCE_RVC
Reference

Pipeline
Schematic

The script in this example is a slightly more compli-
cated image pipeline that resamples the source image
to match the extents, cell size, and coordinate refer-
ence system of a reference image. Both sources and
the target in this example are RVC raster objects, but
the same pipeline structure can be used with differ-
ent types of sources and targets.

An RVC source or target is constructed with an in-
stance of the class RVC_OBJITEM to specify the
raster object to use or create. In this script the func-
tion DlgGetObject is used to open an Object
Selection Dialog so the user can select the source
image to resample, the reference image, and the lo-
cation of the target image. This function encodes
the raster filepath and object path as an
RVC_OBJITEM class instance that can then be used
in the constructor for a source or target.

The IMAGE_PIPELINE_FILTER_RESAMPLE class
has several constructors with different sets of pa-
rameters. The choice of constructor determines
whether the filter resamples 1) from object to map
coordinates and a specified image size, 2) to a refer-
ence image, 3) to a specified coordinate reference
system and cell size, or 4) to a specified coordinate
reference system and image size. In this example the
constructor that specifies a reference image is used.

A script can include more than one pipeline struc-
ture to perform different operations, with the target
of one pipeline being used as the source for the
next. The filepath or object path of a target are not
valid until the pipeline is processed. The
TARGET_RVC class has a GetObjItem() method (and
the other TARGET classes a GetFilepath()method)
that must be called after the pipeline is processed to
get the valid path information (RVC_OBJITEM or
FILEPATH) to pass along to the source of the next
pipeline.

in the Script Reference
window, navigate to the
Classes / Image Pipeline
/ Filter list and highlight
the entry for the
FILTER_RESAMPLE
class
note the different forms
of the constructor for
this class

page 59

Writing Scripts with SML

The Script Builder in TNTmips Pro provides a graphi-
cal design environment for creating standalone
processing scripts. The Builder window provides a
large design canvas and a sidebar list from which
you can choose classes and functions to place in
the canvas. The design canvas shows these script
components as boxes that can be moved as needed
and minimized or expanded to hide or show the pa-
rameters of the function or class. Connecting the
components (as shown by the gray lines in the can-
vas) establishes the sequence of execution and
automatically generates SML code that can be
viewed and run using the Script tabbed panel. The
Script Builder is best suited for creating scripts that
use the pipeline processing classes. Script designs
can be saved to and reloaded from a design file with
the .smlb file extension.

Functions and classes shown as boxes that you can
position and connect to establish processing sequence.

Design Canvas
Select components from
list to place in the canvas.

Class & Function List

Lets you set parameter values
for functions and classes.

Settings Panel

STEPS
choose Script / Builder
from the TNTmips menu
in the Script Builder
window, press
the Open icon
button
choose SML /
RESAMPLEMATCHREF.SMLB
pause the cursor over a
box in the design
canvas to see its details
open the Script tabbed
panel to see the script
generated from this
design

Script Builder

For more information see
the TechGuides entitled Use
Graphical Interface to
Design Scripts and
Operating the Builder.

page 60

Writing Scripts with SML

Automated Processing with TNTscript
TNTscript is a professional product designed to enable automated production
processing of geospatial data using SML scripts. TNTscript enables SML scripts
to be executed on computers that do not have any other professional TNTgis
products installed. If you develop SML processing scripts using TNTmips Pro or
TNTedit Pro, TNTscript allows you to execute these scripts on additional com-
puters, at remote sites, or using cloud-computing resources. TNTscript can also
be used separately from the other TNTgis professional products to write, edit,
and execute SML programs.

Runtime TNTscript is a Windows or Mac executable program that provides all of
the noninteractive SML processing functionality found in TNTmips Pro.
TNTscript executes SML scripts without user interaction during processing. It
does not have a user interface, but instead is launched from the command line
manually or by another program. Processing scripts written for use with TNTscript
are therefore structured in a similar manner as those used in TNTmips job pro-
cessing. All data-specific variables must be passed to the SML script by TNTscript
at the start of execution. The script to be used and the required variable values
can be specified on the command line or in an XML-formatted text file (.smlx).

TNTscript can be used to integrate custom SML processing into a production
workflow involving other scripts and software products. A custom script control-
ling the work–flow can call TNTscript as needed and specify the name of an SML
script and the required script parameters. The data produced by this processing
script can then be passed along to the next step in the overall work–flow. Net-
work licenses for TNTscript are available to allow TNTscript processing to be
distributed over multiple networked computers. Licenses are also available for
cloud-computing resources. TNTscript can therefore be used to integrate the
capabilities of SML into geospatial processing workflows in an enterprise net-
work to automatically create geospatial products as new data arrive, or in a web
application that processes data by user request.

A TNTscript license includes the runtime TNTscript executable (with its own
installer) and a professional license for TNTview (optional installation using the
TNTgis installer). TNTview provides access to the SML Script Editor for writing,
editing, and testing SML scripts for use with TNTscript. When you set the target
product to TNTscript, the built-in Script Reference documentation indicates which
functions and classes are available (everything except those related to interactive
components such as pop-up dialogs, View windows, etc.). Fully interactive scripts
can also be written and executed from TNTview under the TNTscript license.

page 61

Writing Scripts with SML

Creating and Opening a View Window
STEPS

in the SML Editor
window select File /
Open / *.SML File and
select SML / VIEW2.SML

run the script
choose as input raster
_8_BIT from the CB_COMP

Project File in the CB_DATA

sample data directory
choose as input vector
ROADS from the CB_DLG

Project File in the CB_DATA

sample data directory
press [Close] to close
the view window

An SML script can create and open a View window
to display input or output objects used in the script.
The View can also be used to provide user interac-
tion with the objects via the standard graphical tools
found in the Display process.

Sample script VIEW2.SML shows the basic steps re-
quired to open a view window of a group and display
several geospatial objects. A more detailed explana-
tion of a similar script can be found in the tutorial
booklet Building Dialogs in SML. That tutorial pro-
vides an introduction to creating all types of custom
dialog windows for your SML scripts. It includes
several additional examples of scripts that create dia-
logs incorporating geodata views.

Spatial objects added to a view be-
come layers in a group, and the
group may be contained in a layout.
SML includes individual classes cor-
responding to particular layer types
(such as raster layers, vector layers,
and so on), and for groups, layouts,
and the view itself. These classes all
begin with “GRE_” and are found in
the Display Process (GRE) class
grouping in the Script Reference.
Functions for creating and manipu-
lating these display components are
found in several Geodata Display
function groups.

The script in the next exercise dis-
plays several data layers and
provides a graphical point tool for obtaining coordi-
nate information from the View.

SML also provides another, simpler way to provide user interaction between a script
and data in a View. Tool Scripts and Macro Scripts can be launched from a View
window in the Spatial Data Display process and can automatically access and operate
on the objects in the View. These scripts are discussed in the tutorial Introduction to
Geospatial Scripting.

page 62

Writing Scripts with SML

Previous exercises have discussed SML class meth-
ods that use an object's georeference information to
convert position information between object coor-
dinates (such as raster line and column numbers)
and map coordinates. When you display spatial
objects in a View within a dialog window, several
other coordinate systems come into play. Sample
script PTCOORD2.SML will help you explore these co-
ordinate systems and illustrates the resources
available to convert between them. The script dis-
plays a preset raster and vector object and provides
a graphic point tool with which you can select a
position. When you apply the tool (right-click), the
point position is reported in the console window in
various coordinate systems.

A graphic tool in a view returns positions in the
pixel coordinates of the drawing area of the view
(measured from the upper left corner). These screen

coordinates are used if you want to use
SML drawing functions to draw additional
features in the view. The view also has
view coordinates, which for a single
group view are the group map coordinates.
The group coordinate reference system
is determined initially by the georeference
of the first layer added to the group, but
can be modified by a script using a
method on the GRE_GROUP class. Each
layer in the view also has layer coordi-
nates, which are the object coordinates
for the object in the layer, as well as layer
map coordinates, which are determined
by the georeference used by the object in

the layer. The GRE_VIEW class
includes methods for obtaining
transformations between view
coordinates and any of these
other coordinate systems.

STEPS
select File / Open / *.SML
File and choose SML /
PTCOORD2.SML

run the script
left-click in the window to
place the point tool
right-click to view
coordinates in the
Console window
try various point locations
to see how the different
coordinate types vary
study the script to see
how the coordinate
transformations are
performed
Close the Find Point
Coordinates window
when you are finished

Coordinate Systems in Views

page 63

Writing Scripts with SML

Working with Geodata in a View
STEPS

select File / Open / *.SML
File and choose SML /
VIEWGD.SML

run the script
left-click in the window to
place the point tool
right-click to select and
highlight a polygon and
see data for that area
printed to the console
try various point
locations to see how the
polygon attributes vary
Close the Select Polygon
window when you are
finished

Graphic tools added to a view allow the script user
to interact with the geodata layers in the view and
obtain information from them that the script can then
use to perform computations. The sample script for
this exercise automatically displays a digital eleva-
tion model (DEM) raster object and overlying soil
polygons. It also provides a point tool that is used
to select a soil polygon and compute the average
elevation from the corresponding area of the DEM.

The point tool is set as the default tool for this view.
The tool is placed by left-clicking in the view, and
right-clicking triggers the associated user-defined
function. The script transforms the point tool posi-
tion from screen to view coordinates and then from
view to layer coordinates for the soil layer. The
resulting object coordinates are passed to the
FindClosestPoly() function, which re-
turns the element number of the
polygon enclosing the point. This el-
ement is highlighted, and some soil
attributes are read and printed to the
console. The polygon is converted to
a region in the soil vector map coordi-
nates, and this region is reprojected to
the coordinate reference system of the
DEM. A special loop construction (in-
troduced in a previous exercise on
Regions) is used to loop through just
the DEM cells lying within this
reprojected region:

for each DEM[lin,col] in reg {
...
}

The DEM cells within the re-
gion are counted and their
values are summed, allowing
the average elevation for the
region to be computed.

page 64

Writing Scripts with SML

An SML script can create and record custom anima-
tions from your geospatial data. The sample script
in this exercise creates a movie file showing a series
of viewsheds computed from an elevation raster at
different points along a vector line.

Any animation consists of a gradually-varying se-
quence of static frames. A movie generation script
captures frames from the contents of one or more
view windows created by the script and copies each
frame into an output MPEG or AVI file. The movie
can therefore record any sequential change in the
view window(s) used to create the frames. Func-
tions in the Frame and Movie function groups are
used to set up the generic frame and movie param-
eters, capture the view window contents to a frame,
and copy the frame contents to the output file. You
can also annotate each frame with text or position
markers using functions in the Drawing function
group.

Sequential changes in the View window can be
achieved in several ways. The script could add and

remove a series of pre-prepared layers
to and from the view. It could also
modify the display parameters for a
single continuing layer. For vector ob-
jects, this could involve basing the
element styles on a sequence of vary-
ing attribute values (such as
population in different years). The fi-
nal method is exemplified by the
VSHEDMOV3 script: the script itself com-
putes the changes from the supplied
data and parameters. For each frame in
this movie, the script computes the cur-
rent viewshed and displays it in the
view window in yellow over a shaded-
relief rendering of the elevation model.

STEPS
choose File / Open /
*.SML File and select
SML / VSHEDMOV.SML

study the script
structure and comments
run the script
for the input elevation
raster choose PONDS

from the PONDVIEW Project
File in the SML sample
data directory
for the input vector
choose VECPATH from the
PONDVIEW Project File
for the input style object
choose STYLES from the
PONDVIEW Project File

Movie Generation Scripts

page 65

Writing Scripts with SML

Modifying and Rendering Layouts
STEPS

choose File / Open /
*.SML File and select
SML / LAYOUT.SML

study the script
structure and
comments
run the script, choosing
COLOR / COLOR.RVC as the
input Project File

The modified layout
rendered to a PDF file and
viewed in Adobe Reader.

The HazZones vector layer
added to the layout by the
script.

Layouts in the TNTmips Display process are used
to assemble multiple geospatial data layers for pre-
sentation purposes. Display layouts form the basis
for electronic atlases and can be rendered to KML
files for viewing in Google Earth. Hardcopy layouts
can include cartographic elements such as text an-
notation, scale bars, and legends for printing or
rendering to PDF files for electronic distribution.

The GRE_LAYOUT class in SML represents a lay-
out object. Using this and associated classes and
functions you can write SML scripts that read and
modify an existing layout, create a new layout, or
write a layout to a Project File. Your script can add
or remove spatial layers from any
group in the layout, set up styling
and DataTips for new spatial layers,
and modify text annotations in the
layout. PDF and KML classes are
provided in SML to allow you to ren-
der a completed layout to the
respective file type.

The sample script for this exercise
reads a hardcopy layout from the
TNT sample data, adds an existing
vector object to the spatial group,
and renders the modified layout to a
PDF file. A more complex applica-
tion might import geospatial data from
one or more sources, process the
data (such as extracting a desired
area), and add the processed data to the layout be-
fore rendering. The PDF class also allows you to
write additional pages to an existing PDF file, allow
a script to generate multipage report files.

The sample canvquakes script provides a more complex example of modifying and
rendering a layout. This script is run hourly at MicroImages by the TNTmips Pro Job
Processing system to download and process earthquake data, add it to a layout with
reference data, and render the layout to a KML file. This script, sample data, and
explanatory Technical Guides are available for free download at
www.microimages.com/downloads/smlscripts.htm.

page 66

Writing Scripts with SML

Accessing Web Data
STEPS

choose File / Open /
*.SML File and choose
SML / DOWNLOAD.SML

study the script
structure and comments
run the script
when prompted, enter
17 for the minimum
latitude, 70 for the
maximum latitude, -178
for the minimum
longitude, and -108 for
the maximum longitude

The Internet is now an important source of free,
publicly available geospatial data, some of which is
updated frequently to represent current conditions.
You can download files from the internet in an SML
script using methods in the HTTP_CLIENT class.
The Connect() method of this class takes a string
parameter containing the identity of the remote host
(either as an IP address or the host or website URL).
It is a good idea to set a timeout time (in seconds)
for the class using the SetTimeOut() method in case
the script is unable to make the connection, other-
wise it will keep trying to connect indefinitely and
the script will never complete. Use the
DownloadFile() class method to download the re-
mote file. This method takes a string with the full
URL to the remote file and a string with the local
path and filename where you want the downloaded
file to be written.

The sample script in this exercise downloads a text
file containing global earthquake epicenter locations
and attributes from a US Geological Survey website.

It imports the global points
to a temporary vector ob-
ject and copies points to
the output vector that are
within the range of latitude
and longitude you specify.
The limits used in the in-
structions for this exercise
extract points for the
northeast Pacific region,
including southern
Alaska, California, and
Hawaii. This script is a
much-simplified version
of the canvquakes.sml
sample script referenced
on the previous page.

Alaska

California

Hawaii
20°

70°
-170° -120°

Downloaded, imported, and
extracted earthquake
epicenter points for a 7-day
period for the northeast
Pacific Ocean region,
displayed with a map grid.

page 67

Writing Scripts with SML

Launching Other Programs
STEPS

choose File / Open /
*.SML File and choose
SML / SOILDATA.SML

study the script
structure and comments
run the script
for the input vector
object choose
CBSOILS_LITE from the
CB_SOILS Project File in
the CB_DATA sample data
directory

Soil attributes compiled from
the CBSOILS_LITE vector object
(above) output to a CSV file
that is opened in a spread-
sheet program (right).

A geospatial process script can export data to vari-
ous external file formats and launch another program
to present or further process that data. The System
function group provides several functions that you
can use launch another program.

The run() function can be used to run a program but
has no provision for passing command-line param-
eters or passing the data you have exported. The
ExecuteProcess() function takes a process string that
can include command-line parameters for the pro-
gram you are calling. For example, the code below is
used to start a PHP script:
start$ = "php c:/wamp/www/start.php " +

taskID$;
ExecuteProcess(start$);

The RunAssociatedApplication() function takes a
filename and uses your operating system resources
to open the file in the program that your system has
registered for that file type. The sample script for
this exercise writes attribute data to a CSV
text file and launches the spreadsheet pro-
gram associated with that file type (for
example, MicroSoft Excel).

page 68

Writing Scripts with SML

Extending SML
TNTsdk is a free software
development kit that you can use
to create custom processes for
TNTmips, TNTedit, or TNTview.
TNTsdk provides programming
libraries of several thousand C
functions and hundreds of C++
classes. Your custom processes
can invoke these MicroImages
library components to present the
user interface, operate on
geodata, and present process
results. Use of the TNTsdk
requires a TNTmips Pro license.
More information is available in the
tutorial entitled Introduction to
Using TNTsdk.

Experienced programmers can add compiled
functions to SML using the TNTsdk and/or
C++. Create a Dynamic Linked Library (DLL)
containing your functions and place them
in a directory called “plugins” in the direc-
tory containing the TNTmips executables
and DLLs. A sample program called
smlplug.c provided with the TNTsdk shows
how to include your compiled functions in
SML. Your custom functions are accessable
from the function list in the Script Refer-
ence window in their own function group.

Create a directory named “plugins” in your
TNTmips product directory and place the
DLL with your custom functions there.

In TNTgis installations on Windows
platforms, SML scripts can also
launch and communicate with
ActiveX component programs created
in Visual Basic, C#, or C++. An SML
script can directly access component
class structures (data structures and
methods), open a dialog window de-
fined in the ActiveX component, and
exchange data with the component
class. Any information processed by
the component program can be trans-
mitted to other application programs

or sent back to SML to be processed and/or written to the geospatial data in your
Project Files. Experienced Windows programmers can therefore use the dialog
design tools in Visual Basic to set up the user interface for an SML script rather
than using the built-in user-interface components in SML.

To implement an ActiveX compent written in Visual Basic for use in TNTmips:
• design a Visual Basic form (dialog) and supporting properties and methods

• use Visual Studio to build an installation package to install and register the
ActiveX component program

• write an SML script that uses the $import preprocessor command to “import”
the ActiveX component class.

page 69

Writing Scripts with SML

Communicate with ActiveX Programs
STEPS

choose File / Open /
*.SML File and choose
SML / VB_PANSHARP.SML

study the script
structure and comments

download VB_PANSHARP.ZIP

from

To run this script on a
Windows computer:

www.microimages.com/downloads/smlscripts.htm

unzip the file and run the
Setup program in the
Package subdirectory
run the script
for the input raster
objects choose from the
BIGPINE Project File in the
SMLDLG directory BAND_3
for Red, BAND_2 for
Green, BAND_1 for Blue,
and BAND_8 for Pan

Dialog from the ActiveX
component program written
in Visual Basic and called
by VB_PANSHARP.SML

The sample script for this exercise illustrates the use
of an ActiveX component written in Visual Basic to
provide the user interface for an SML script. The
script statement

$import VB_PanSharp.VBForm

“imports” the VBForm class from the ActiveX pro-
gram VB_PanSharp. The associated dialog is a
modal dialog, meaning that SML script execution is
suspended while the ActiveX
dialog is open. The SML script
can pass data to the imported
component class before the dialog opens. and, as in
this example, retrieve data (the dialog settings se-
lected by the user, stored in the VBForm class data
structure) from the imported class after the modal
dialog has been closed.

With a modeless ActiveX dialog, the SML script can
continue to execute while the ActiveX dialog is open,
which requires on-going communication between
the ActiveX class and SML.
When you create the Active X
component class, you can define
events associated with the dialog
controls, such as pressing a par-
ticular pushbutton. Each event
should be provided with an asso-
ciated class method that can be
used in the SML script to register
the name of a function elsewhere
in the script that will be called and executed in re-
sponse to that dialog event.

An ActiveX component created in Visual Basic can
be compiled as a simple executable file or as a DLL.
The latter method allows multiple instances of the
component to run simultaneously. A modal ActiveX
dialog can be activated from either form of compo-
nent. An ActiveX component using a modeless
dialog must be compiled as a simple executable file.

page 70

Writing Scripts with SML

STEPS
select File / Open /
*.SML File and choose
SML / VIEWSHED.SML

select File / Save As /
RVC Object (Encrypted)
create a new Project
File and SML object as
prompted
select an encryption
password in the
Encryption Options
window
use File / Open / RVC
Object to select your
encrypted script (the
SML window then
shows only an
encryption message)

So far you have worked with SML scripts that have
been saved as independent text files with the SML
file extension. These are 1-byte text files that can
be opened with any text editor. If you do edit a script
file with another editor, be sure to save it with the
SML extension.

An SML script also can be saved as a script object
in a Project File (use File / Save As / RVC Object).
This allows you to put input, output, and script ob-
jects all in the same file if you find this more
convenient. Another advantage to storing a script
in a Project File is the ability to encrypt a script ob-
ject. You may want to distribute your scripts to
others but still protect your development efforts and
proprietary algorithms. An encrypted script object
can only be run by authorized TNTmips users and
cannot be viewed or edited by anyone (including the
creator; always keep an unencrypted copy of the
script for reference or further development). You

can allow an encrypted script to be
run by any TNTmips user or limit
its use to computers with a specific
software license key number. You
can also choose to require a pass-
word for running the script.

 If you open an encrypted script in
the SML Editor window, it shows
only an encryption message.

IMPORTANT:
Always keep an unencrypted
copy of the script for editing.

Use the Save As / RVC
Object (Encrypted) option to
create an encrypted copy
of the script in a Project File.

Script Objects and Encryption

page 71

Writing Scripts with SML

See the tutorial booklet
Using Geospatial Formulas
for a complete introduction
to constructing and using
GeoFormulas

STEPS
choose Main / Display
from the TNTmips menu
in the Display Manager
choose Display / New /
Empty 2D
choose Add / Layer /
Geoformula / Quick-Add
Geoformula in the
Display Manager
select BROV_UMN.GSF from
the GEOFRMLA sample data
directory
for input, select three
TM bands from the CB_TM

Project File and the
SPOT_PAN image in the
CB_SPOT Project File, both
in CB_DATA

GEOFRMLA / BROV_UMN.GSF illustrates the
dynamic enhancement of low-
resolution TM imagery with a high-
resolution SPOT image.

A GeoFormula layer is a computed display layer that
uses one or more input objects to derive a result for
display. It gives you a way to apply SML manipula-
tions to objects “on the fly” rather than running
separate processes to prepare output objects for dis-
play. A GeoFormula layer contains a "virtual object";
it does not create an output object that is saved in a
Project File. Instead, it creates a display layer that
releases all its system resources (such as disk space
and memory) when you are finished with it.

For example, red and infrared bands of raster imag-
ery can be combined to produce a Transformed
Vegetation Index (TVI). Of course TNTmips offers
a simple process that produces a TVI output raster
object from selected input objects if you want to re-
tain the TVI output for other uses. But if you just
want to view the TVI result and do not care to keep
the output object, you should use a GeoFormula dis-
play layer.

A GeoFormula script can be saved as
a reusable file. A GeoFormula layer
can be combined with any number of
other layers in the TNT display pro-
cess to create a complex visualization
of multiple geospatial objects.

The GeoFormula feature is primarily
provided for dynamic visualization
tasks in the display process. You can
also run a separate GeoFormula pro-
cess (Interpret / Raster / Combine /
GeoFormula) to create permanent
output objects for other uses.

SML and GeoFormulas

Advanced Software for Geospatial Analysis W
R
I
T
I
N
G

S
M
L

Voice: (402)477-9554
www.microimages.com

MicroImages, Inc.

MicroImages, Inc. publishes a complete line of professional software for advanced geospatial
data visualization, analysis, and publishing. Contact us or visit our web site for detailed
product information.

TNTmips Pro TNTmips Pro is a professional system for fully integrated GIS, image analysis,
CAD, TIN, desktop cartography, and geospatial database management.

TNTmips Basic TNTmips Basic is a low-cost version of TNTmips for small projects.

TNTmips Free TNTmips Free is a free version of TNTmips for students and learning profes-
sionals with small projects.

TNTedit TNTedit provides interactive tools to create, georeference, and edit vector, image,
CAD, TIN, and relational database project materials in a wide variety of formats.

TNTscript TNTscript lets you execute SML scripts on additional computers, at remote sites,
or using cloud-computing resources.

TNTview TNTview has the same powerful display features as TNTmips and is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD or
DVD at low cost. TNTatlas CDs/DVDs can be used on any popular computing platform.

Index
Act iveX. 69
array..... .31
CAD object..43
coordinate transformation..................37-38
da tabase . 45-47
debugger....................................28-29
classes...17-21
encryption..66
functions..................................15-17,22-24
GeoFormula.....................................71
hash..34
import..54-55
job processing................................55
layout... .65
LIDAR...52
loops (for, for each, while)................13-14
Macro Script......................................61
matrix..31

movie script....................................64
pipeline.... .56-59
preprocessor commands....................28
procedures..............................15-17,22-24
raster object.....................................39,51
region object.....................................42
Script Builder..................................59
shape object...................................44,52
status dialog.................................53
s t r i n g . 3 3
str ingl is t .32
syntax.... .6,7
TIN objects...43
TNTscript......................................60
Tool Script....................................61
user input...25
variable...10,24
vector object..........................40-41,49-50
view window..................................61-63

	Before Getting Started
	SML in TNTgis
	Sample Geospatial Scripts
	Run VIEWSHED.SML
	The SML Editor
	Checking Syntax
	Script Reference Window
	Keywords and Operators
	Variables
	Expressions and Statements
	Branching Using Switch and Case
	Raster Algebra and "For Each" Loops
	"For" and "While" Loops
	Built-In Functions
	Navigating the Function List
	Console Functions
	Using Classes
	Member Inheritance and Type Checking
	Class Methods
	RVC System Classes
	User-Defined Functions and Procedures
	Function Return Values and Parameters
	Variables by Reference
	Interactive User Input
	Custom Dialog Windows
	Script Development and Editing
	Preprocessor Commands and Debugging
	SML Debugger and Script Timing

	Toolbars and the SML Custom Menu
	DataContainers and Text Files
	Using Arrays and Matrices
	Stringlists and the DATETIME Class
	Working With Text Strings
	Using the HASH Class
	Working with Text Files

	Working with Spatial Coordinates
	Coordinate Reference Systems
	Coordinate Transformations
	Object and Map Coordinates

	Working with Different Object Types
	Raster Objects
	Vector Objects
	Using the Vector Toolkit
	Regions
	CAD and TIN Objects
	Shape Objects
	Reading Values from Database Tables
	Using RVC DATABASE Classes
	Creating an Element Database
	Converting Objects

	Advanced Sample Scripts
	Sample Script: Extract Polygons
	Sample Script: Network Routing
	Sample Script: Devegetating Images
	Sample Script: Processing LIDAR Points

	Using Status Dialogs
	Batch File Conversion with SML
	Running Scripts in Job Processing
	Pipeline Image Processing with SML
	File Conversion via Image Pipeline
	Resample to Match Reference via Pipeline
	Script Builder

	Automated Processing with TNTscript
	Working with View Windows
	Creating and Opening a View Window
	Coordinate Systems in Views
	Working with Geodata in a View
	Movie Generation Scripts

	Modifying and Rendering Layouts
	Accessing Web Data
	Launching Other Programs
	Extending SML
	Communicate with ActiveX Programs
	Script Objects and Encryption
	SML and GeoFormulas
	Index and MicroImages Product Information

