I U1 Id | n g an d
S | n g Q U e rl ES

Tm | ps‘ e
TNTed ey, it
TNTVIew® Y

Before Getting Started

This booklet shows you how to construct queriesin the TNT productsto utilize
the attribute information attached to your vector, CAD, shape, and TIN objects.
This series of step-by-step exercises leads you through the required structure
and syntax of queries, progressing from simple one-line examplesto querieswith
multiple condition statements and processing loops.

Prerequisite Skills Thisbooklet assumesthat you have completed the exercises
in the tutorial booklets Displaying Geospatial Data and TNT Product Concepts.
Those exercises introduce essential concepts and skills that are not covered
again here. Please consult those booklets for any review you need.

Sample Data The exercisesin this booklet use sample data that is distributed
withthe TNT products. If you do not have accessto a TNT products DVD, you
can download the data from Microlmages web site. In particular, this booklet
uses samplefilesinthe uery datacollection. Make surethat you have acopy of
the sample data on your hard drive so changes can be saved when you use the
objectsin thesefiles.

More Documentation This booklet is intended only as an introduction to the
use of database queries. Details of the process can be found in a variety of
tutorial booklets, Technical Guides, and Quick Guides, which areall availablefrom
Microlmages web site.

TNTmips® Pro and TNTmips Free TNTmips (the Map and Image Processing
System) comesin threeversions: theprofessiona version of TNTmips(TNTmips
Pro), the low-cost TNTmips Basic version, and the TNTmips Free version. All
versionsrun exactly the sasme codefromthe TNT products DV D and have nearly
thesamefeatures. If youdid not purchasethe professional version (which requires
asoftware license key) or TNTmips Basic, then TNTmips operatesin TNTmips
Freemode.

Database queries can also be used to control the display of geospatial objectsin
TNTview and to select elements for editing in TNTedit. All exercises in this
booklet can be completed in TNTmips Free using the sample geodata provided.

Randall B. Smith, Ph.D., 4 January 2012
©Microlmages, Inc., 2000-2012

You can print or read this booklet in color from Microlmages’ web site. The
web site is also your source for the newest Getting Started booklets on other
topics. You can download an installation guide, sample data, and the latest
version of TNTmips.

http://www.microimages.com

page 2

Welcome to Building and Using Queries

TNTmips gives you great flexibility to use the
database attributes of geometric (vector, CAD,
shape, and TIN) objects to control the display and
printing of the object, or to select elementsfor usein
various processes. Database queries provide the
most complete and versatile means to utilize this
attributeinformation.

A database query is a set of instructions defining
attribute criteriathat are used to select recordsfrom
adatabase. The specific spatial elements (such as
lines or polygons) to which those records are
attached are then automatically selected for the
current process. A query appliesto aspecific element
type, and you can simultaneously use separate
queries for different element typesin an object. In
Spatial Display you can use a query to temporarily
mark (highlight in color) certain elementsor to select
which elements should be displayed. The attribute
information you refer to in queries can be qualitative
(such asaclassname), or quantitative (such ascrop
yield values).

Queries must use a standard “ grammar and syntax”
that TNTmips understands. The query language
used is a subset of the TNT Geospatial Scripting
Language (SML). You composequeriesin the Script
Editor window, which simplifiesconstruction of valid
queries by letting you choose fields from the
available database tables and insert symbols and
functions from a Script Reference window that
outlines the correct syntax. The Script Editor also
provides a syntax checker to help you find errors
before applying the query.

Most exercises in this booklet use queries to select
or style elementsin avector object for display. But
keep in mind that queries can be used in any process
that selects component elements in geometric
objects. In addition, you can use queries in some
raster processes to select cell valuesfor processing.

STEPS

M make sure that you have
a copy of the sample
data in the QuEryY data
collection on your hard
drive

launch TNTmips

choose Main / Display
from the TNTmips menu

HE

The exercises on pages 4-9
introduce the structure of
simple query statements,
comparison operators, and
some useful tools for
building and checking
queries. Pages 10-16
cover query structures
involving compound
statements, the use of
variables and comments,
and using queries to check
database record
attachments. Styling by
Script is introduced on
pages 17-18, along with the
use of conditional “if-then-
else” constructions. Pages
19-22 describe marking
displayed elements by
query using the interactive
Query Builder. Examples of
queries based on the spatial
and topological attributes of
vector objects are found on
pages 23-25. Pages 26-29
show scripts to create
dynamic labels in displays
and virtual fields in
database tables. Pages 30-
31 provide examples of
queries that are useful in
editing vector objects.

page3

Building and Using Queries

Select by Querying a Single Field

STEPS

M click on the Add
Objects icon "'é
button on the Display
Manager window’s
toolbar

M select the cesoiLs_LiTE
object from the ce_soiLq
Project File in the Query
data collection

M click on the Layer E
Controls icon in the
cBsolLs_LITE layer entry
in the Display Manager

M in the Vector Layer
Controls window, set
the Select option on the
Polygons panel to By
Query and click on the
adjacent Specify button

Object: |

M in the Script Editor
window, type the
following text exactly
(including capitalization):

YIELD.WHEAT > 35;

= Script Editor {(3268)

CHEZ {DARE wEik ?

| Lines Polygons |Nodes |Lahels |3D

SelectlBg Query :I SPe%ﬁ... Stglel[:lassstule

Thesimplest form of query sel ects a specific type of
spatial element (such aspolygons, lines, or pointsin
avector object) on the basis of thevaluesfor asingle
databaseattribute. Inthisexerciseyou enter asmple
query that selects soil map polygonsinavector object
for display. Each soil type has associated valuesfor
maximum potentia yield for severa crops. Thequery
selects polygons for which the potential crop yield
for wheat is greater than 35 bushels per acre. The
query statement hastheform:

Comparison

Operator Value

Attribute

The query must specify which database table con-
tains the attribute information, and in which field it
isfound. This “attributelocation” information must
be entered in the form
TABLE.FIELD. The
valueinthisexampleis
asimple numeric value, and the compari son operator
isthe" Greater than” operator (>).

YIELD.HHEAT > 353

|

=~

[0K

| Cancel

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window
to accept the display
settings and display the
vector object

Display options for this vector object are set to draw all
lines, so the outlines of all soil polygons are drawn. The
polygons selected by the query are filled with colors and
fill patterns that are based on the soil type and that were
previously set up for display By Attribute. Several soil
types meet the wheat yield selection criterion. Unselected
polygons remain unfilled.

page4

Building and Using Queries

Using the Insert Operator Option

STEPS

The previous query sel ected soil polygons belonging
to several soil typeclasses. Let'srefinetheselection
criterion so that the query selectsonly those polygons
with a potential wheat yield of exactly 38 bushels
per acre. To specify this selection criterion, usethe
“Equal to” operator (==, double equal sign) in the
guery statement. You can simply type the operator,
or open the Script Reference window, which letsyou
choose the operator from ascrolled list and insert it
into the query statement at the current cursor
location.

EScript Reference (3268}

B Constants
B Yariablas
E Classes
Functionsg
Keyuords
B Operators

i Operator ==

Eguad to (Cormparison)

Description:

a="h
The boolesn expression returns e when a 1s equal to
b. Otherwise, returns false.

HE& ' mmms

= {
YIELD.HHEAT ; / 3

The text field describes 7
the function of the
selected operator.

|

|

reopen the Vector “
Layer Controls

window

click on Select: [Specify]
in the Polygon Options
panel

highlight “> 35" in the
Script Editor window
and press <Delete>
press the Script

Reference icon lg
button

in the Script Reference
window, expand the
Operator list and select
the “==" operator,

then press the

Insert icon button &‘
in the Script Editor
window, type 38 to the
right of the operator,
then click [OK]

click [OK] in the Vector
Layer Controls window
to accept the display
settings and display the
vector object

Script Reference
icon button

Insert the operator from the
Script Reference window.

YIELD,HHERT ==3

= Seript Editor (3268)

SHEZ YDAAS FEK0 ?

YIELD.HHEAT == 383

Type the
value to be
matched.

Fewer soil classes meet the more
restrictive selection criterion in the
revised query statement.

Building and Using Queries

Using the Insert Field Option

STEPS
M open the Vector Layer
Controls window and
the Script Editor
window
select YIELD.WHEAT
in the existing query and
press <Delete>
M press the Insert &
Field icon button 2
M in the Insert Field
window that opens,
choose YIELD from the
Table menu
choose OATS from the
Field menu, then click

[Insert]

click [Close] on the
Insert Field window
change the value
on the right side of
the query
statement to 43,
then click [OK]
click [OK] in the
Vector Layer
Controls window

This query selects several of
the same soil classes selected
by the first query (page 4).

= Insert Field (3268) MmE

You can aso use the Insert Field icon button in the
Script Editor to help construct or modify queries.
This button opens the Insert Field window, from
which you can choose the Table and Field and
automatically insert theattributelocationinformation
into your query statement in the correct form.

= Script Editor (3268)

CHE {NMAE(Facds

Press the Insert
Field icon button
to open the
Insert Field
window, which
has a menu with

= Insert Field (3768} MmE

|‘ == 38;

Elenentll:ur'rent Polygon :I

Tabl Int 1 i .
"_' N = all available
Field [Elenbun = database tables
I Cl:
e for the selected

element type.

= Inzert Field {3268}

ElenentICurrent Polygon ;I

Table |YIELD x|

Field [sviBOL =]
Insert | Close

...updates the Field menu to
list the fields in that table.

Elenentll:urrent Polygon :l

Table x|
Field |

Internal

Internal
CLASS
DESCRIPTH
YLDUNITS \
CODES_GRPCODE
CODES_RATING

Choosing a Table...

=Insert Field (3268) MmE

Elenent |Current Polygon :I

Choosing a field creates
the TABLE.FIELD entry;

Table YIELD =l click the Insert button to
ST RIS = insert it into your query
Insert | Close| | statement.

Efcript Editor (3768)

YIELD,.OATS == 38;

= Script Fditor (3268)

EHB| I DAAE ek ?

YIELD.OATS == 43;

Change the value on the right

= side of the statement to 43.
||Line 1 | 0K | Cancel |

page 6

Building and Using Queries

Querying a String Field

STEPS

The query language used in the TNT products is
case-sensitive. |If thetable CLASS containsafield
called Class, the TABLE.FIELD entry must read
CLASS.Class; if you enter it asCLASS.CLASS, the
query processwill not find thefield and will indicate
thereisan error inthe query. Usingthe Insert Field
procedure hel psyou avoid thistype of problem.

The database fields you have used in your queries
so far have contained numeric data. The YIELD
table for cesoiLs LiTE also contains a field named
SYMBOL with soil type symbolsin String format.
The term “string” is short for “character string,”
which means that the field is not evaluated
numerically, and can contain text and other
nonnumeric characters. String fields may contain
numerals (for example, CLASS1), but they areread
as charactersrather than asnumbers. String values
in query statements must be enclosed in double
guotes and are also case-sensitive.

]

]

)

open the Vector Layer
Controls window and
the Script Editor window
select YIELD.OATS in
the existing query and
press <Delete>

use the Insert Field
procedure to insert
YIELD.SYMBOL on the
left side of the query
statement

change the value on the
right side of the query
statement to "KaB"
(including the double
quotes), then click [OK]
click [OK] in the Vector
Layer Controls window

= Inzert Field (3768)

Elenentlturrent Polygon ll

Table |YIELD |

Field [stmpoL ~|
Insert | Close

The SYMBOL field contains string values.

Enclose a string value in double quotes.

= Script Editor (3268)

SEHB P DHRAEFSkd ?

= i
|Line| | 0K

| Cancel

Selected soil polygons

belonging to class KaB.

YIELD,SYHBOL == “KaB"; &
7] The syntax highlighting in the Script

Editor window shows all string
values in cyan color.

page7

Building and Using Queries

Checking Query Syntax

STEPS

M open the Vector Layer
Controls window and
the Script Editor
window

M manually change the left
side of the existing query
statement to
CLASS.CLASS (all
capitals)

=S Seript Editor (3268}

2EE L hAnE oK s

I|ELH55.ELHSS == "KaB": N

M press the Check

W

The rules concerning capitalization and use of
quotes for string values are examples of the syntax
of the TNT query language. Query syntax ischecked
automatically when you click [OK] to execute the
query. If thequery containsasyntax error, the Script
Editor remains open and an error message is

displayed.

You can check the syntax of a query before
executing it by pressing the Check Syntax icon
button in the Script Editor. The process can find
misspellings, missing parentheses or other
symboals, or referencesto nonexistent databasefields.

Syntax icon The process starts checking at the beginning of the
button query. If no syntax errors are encountered, the
message line al the

Syntax error:

Hodule; ==——==—

expecting Humeric Field Hame or String Field Hane
Hessage code: -5837 Yersion: 2011 (16 Feb 2011}

Reviszion: =-- Line: 1

bottom of the Script
Editor window reads

0K

Save Text...

“Syntax OK.” If asyntax
Smateert| | error s detected, a

M note the error message,
then press[OK] on the
Message window

M select CLASS.CLASS
in the query statement
and press <Delete>

M press the Insert Field
icon button and insert
CLASS.Class into the
query statement

M press the Check .
Syntax icon ﬁ'
button

M note the “Syntax OK”
message in the status

line at the bottom of the

Script Editor window

The “Syntax OK”

message appears if /

no errors are found.

M essage window opens to show an error message.
Inthisexample, the query checker detected that there
isno databasefield named CLASSintable CLASS.
After correcting a syntax error, you can use the
Syntax option again to check for errors in the
remainder of the query.

= Script Editor {(3268)

SEHE Y naasHake ?

CLAS5.Class == "KaB"; A

EScript Editor (3268}

T CEHB[LDAAS k0 ?
||'-i“"- T CLASS,Class == "KaB"3]
£
| |
Syntaxr l]Kl | 114 | Cancel

page8

Building and Using Queries

Using Calculations in Queries

Thevalue ontheright side of aquery statement can
also be provided by adatabase field or acalculation
involving a database field. Calculationsin queries
can use standard arithmetic operations:. addition (+),
subtraction (-), multiplication (*), and division (/).
You caninsert the operation symbol sfrom the Script
Reference window if you wish. The Function
listingsin Script Reference window provide access
to trigonometric and other mathematical functions
that can also be used in query

STEPS

M open the Vector Layer
Controls window and
the Script Editor
window

M select and delete the
previous query

M use the Insert
procedures and / or
manual entry to create
the following query
statement:

statements. The sample query for this [YIELD.OATS

exercise selects soil polygonsfor which the potential
yield for oats is exactly 5 bushels per acre greater
than theyield for wheat.

By now you have probably noticed that thelast query
used for a particular object and element type is
automatically stored with the object and is opened
the next time you select the same By Query option.
If you wish to store several queries for the same
object for future use, you can usethe Save and Save
Asicon buttons on the Script Editor window. These
options allow you to save the query currently
displayedinthe Script Editor asafilewitha.qry file
extension or as a script object in a Project File. To
reopen a stored query, use the Open icon button.

= Script Editor {(3268)

SHE ' RABE R ERO P

== YIELD.WHEAT + 5; |

M press the Save %
As icon button,
then choose Save as
Text File (*.qry) from the
dropdown menu

M use the standard File
Selection window to
name a new file to
contain the query

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window

Usually a query works only
with a specific object
because of a reference to a
unique database field. If you
have a series of objects with
identical database formats,
or the query refers only to
fields in standard tables
created by TNTmips, then
you can use the same query
for any of the objects.

YIFLD, Save as text file (*.qryd...
Save as RYC Object,..

Choose RVC Obiject to store the query
as a script object in a Project File.

page9

Building and Using Queries

Compound Queries

STEPS

M open the Vector Layer
Controls window and
the Script Editor window

M delete the preceding
query

M use the Insert
procedures and / or
manual entry to create
the following query:

Each of the queries used in the previous exercises
employs a single selection comparison to choose
polygonsfor display. In many cases you may need
to select elements using a combination of several
criteria. A seriesof selection comparisonsinaquery
statement must be related to each other by one or
morelogical operatorsfrom set theory, such as“and”
(&&),“or” (|), or “not” (). Thekeyword versionsof
these operators must be entered in all lowercase

|YIELD.WHEAT > 34 and

YIELD.OATS > 40,-|

letters, or you can insert them
from the Keyword list in the

M click [OK] in the Script
Editor window and in
the Vector Layer
Controls window
repeat above steps but
substitute “or” for “and”
in the query statement

=Script Editor (3268)

ZHRB| DA E w5

YIELD.HHEAT > 34 amd

[TF

SO
AW

S
e
@iﬁi“ g

i

e

Sl

‘Fl'il'
,/

N

g S
T
9 * ,

Script Referencewindow or insert symbolic versions
fromthe Operator list.

When two comparisons are linked by the logical
“and” operator, both comparisons must be true in
order to make the entire query statement true and
sdlect theelement. When two comparisonsarelinked
by thelogical “or” operator, the query statement is
true if either of the individual comparisonsis true.
Elements meeting either criterion are sel ected.

YIELD.DATS > 403
\ A query statement may continue onto additional |ineS,

though you may wish to indent subsequent lines to
make it clear that they are part of one statement.

R oY e,

N

Polygons for which potential wheat yield is
over 34 bushels per acre and potential oat
yield is over 40 bushels per acre.

Polygons for which either potential
wheat yield is over 34 bushels per acre
or potential oat yield is over 40 bushels
per acre.

page 10

Building and Using Queries

Using the “not equal to” Operator

Most of the soil typesinthe Crow Butteareahavea | STEPS

higher potential yield for oats than for wheat, but | ¥ ©open the Vector Layer
heat usually brings a higher price than oats when Controls window and

Wi - y g g p 3 the Script Editor window

the crop is sold. Let's assume the crop prices per | @ choose New from the

bushel are $3.25 for oats and $4.00 for wheat. This File menu

samplequery isused to identify soil typesfor which | ¥ Effcffu'rréiegn dlor

the totgl pgten?ial crop price per acre fqr oats manual entry to create

(potential yield in bushels per acre times price per the following query:

bushel) is greater than or equal to that for wheat.

This query is complicated | YIELD.WHEAT <> 0 and
YIELD.OATS * 3.25 >= YIELD.WHEAT * 4.0;

by thefact that the potential
crop yield for soil typesthat cannot be cultivatedis | @ click [OK] in the Script
0, and such soil types would satisfy the selection Editor window

M click [OK] in the Vector

comparisoninthe second line of the query. Thefirst Layer Controls window

line of the query excludes the zero-yield sail types,
and illustrates the use of the “not equal to” operator
(<>or!=). Only thepolygonsfor which the potential
wheat yield is not equal to O satisfy the first
part of the query, and only these polygons
) . e I
are subjected to the price comparisoninthe |° " " o
second line. Variables
Classes
Functions| | #0f equal to (Corparisan]
Keyuords

E Operators| | Description:
+

Operator <>

a<h

* The boolean expression returns true
7 when a is not equal to b. Otherwise,
% returng false,

Mote that 1= is equivalent to <>

4=
== nuweric a = 10;
*= numeric b = 10;
’= numeric o = 5;
%= print(h <> a);
#returns false;
print(c <o a);
#returns true;

>=

EScript Editor (3268)

SEHR I DESE | Fak 8 7
TELD. AHEAT <> 0 and
YIELD,OATS = 3,25 >= YIELD,HHEAT = 4,03

Polygons for which a crop of oats would
bring a higher price per acre than wheat,
assuming the potential crop yields and the
stated prices per bushel.

page 11

Building and Using Queries

Using Comments and Variables

STEPS
M open the Vector Layer
Controls window and

the Script Editor window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

You can enhance the readability and later usefulness
of queries by including comments. A comment
beginswiththe“#’ symbol and may be on aline by
itself or at the end of a statement. You can use
comments within the query to explain individual
statements and an introductory comment to provide
an explanation of the intended use of the query and
what object it appliesto.

define variable
price per acre
numeric dollars =

select polygons
YIELD.OATS * 3.25
YIELD.WHEAT * 4.0

for required crop
129;
based on crop price

> dollars or
> dollars;

The TNTmips query process
aso allows you to name and
assign values to variables for
usein aquery. Thisexample
query selects soil polygons
that exceed arequired potential

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window

crop price per acre for either
oats or wheat. The first line of the query is an
assignment statement that definesanumeric variable
caled“dollars’ to storetherequired price, and gives
itavalueof 129. The“=" symbol isusedtoassigna
valuetoavariable (whichiswhy “==" must be used
for the“Equal to” operator).

Variables are useful when the same
value is used more than once in the
query. If you want to run this query
again with a different required price,
you only need to changethesinglevaue
assigned to the variable “dollars’. If
the query were written without the
variable, youwould need to changetwo
actual numeric values in the selection
Statement.

= Script Editor (3268)

SHB YBARE FERO?

define wariable for required crop

Variable names must always start with a
lower-case letter. A variable name cannot
be the same as a query keyword or a
database table or field name.

price per acre
mmeric dollars = 129;

select polygons based on crop price
YIELD.DATS + 3.25 > dollars or
YIELD.HHEAT # 4.0 > dollars:

page 12

Building and Using Queries

Using String Variables

You can also define variables to contain string val-
ues. Thequery inthisexercisedefinesastring vari-
ablename$, which isassigned thevalue” Glenberg”.
(Though not required, ending astring variable name
with the $ character makes it easy to differentiate
numeric and string variable names.) The query se-
lects a subset of soil polygons belonging to the
Glenberg soil series, which includes two soil types
in the Crow Butte area. Instead of using the two

STEPS

M open the Vector Layer
Controls window and
the Script Editor
window

M choose New from the
File menu
use the Insert
procedures and / or
manual entry to create
the following query:

class symbols to select the poly-
gons, this query takes advantage of
the fact that the NAME field in the
DESCRIPTN table provides a soil

(

string name$ =
DESCRIPTN.NAME contains name$ and
POLYSTATS.Area <
POLYSTATS.Area

"Glenberg";

60000 or
> 200000);

description that begins with the

name “Glenberg” for both classes. The query uses
the“contains’ operator, which selects elements for
which aspecified character string matchesall or part

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window

of astring field. In this casethe character string to

be matched (“ Glenberg”) isstored in the name$
variable. Polygonsmeeting thisselection com-
parison are then screened on the basis of their
area (in square meters), which is stored in the
Areafieldin the standard POLY STATStable.
(A POLYSTATS tableis present only if stan-
dard attributes have been calculated for the

vector object.)
SCEPTY
s
Ay« peis
;(/P(é;g‘%ﬁ:\‘v‘

-
=)

=EScript Editor (3268)

SHE ' DAREWOKO?

string nane$ = "Glenberg";

DESCRIPTH.HAHE contains naned amd
{ POLYSTATRZ.Area < GOOOO or
POLYSTATSZArea > 200000)3

The “contains” operator selects polygons
for which the character string in the
name$ variable matches any part of the
DESCRIPTN.NAME string field.

= CHSOILS Lite / Polyllata 7 DESCRIPTH (SEIE]

Table Edit Record Field Help

DR el R
Style|STHEOL NAHE
J-I_]uB |I]urnc very fine zandy loam, |\

i EpF |E i gilt loan, 3 to 30 p{_,
_[-W,E].enberg\loanu very fine sai
_[-EOB \ﬁlenberg/].oanu very fine sai

] |Jr|C |JMoang very fine sand, |/
=4 // i =
. / . . .
The text string “Glenberg” is included in the

DESCRIPTN.NAME field for both soil
types belonging to the Glenberg series.

page 13

Building and Using Queries

Using the Logical “not” Operator

STEPS

A number of soils in the Crow Butte area have

M open the Vector Layer

Controls window and
the Script Editor
window

M choose New from the

File menu

M use the Insert

procedures and / or
manual entry to create
the following query:

potential wheat yields comparable to those of the
two Glenberg soils (27 and 32 bushelsper acre). The
guery in this exercise selects all of the soil types
within this range of wheat yield values except the
Glenberg soils.

The first two lines of the query select any polygon
for which the potential wheat yieldsfallswithinthe

designated range. The
third line of the query
begins with the logical
“not” operator (1), which
reverses the result of the variable, operator, or
expression that followsit. Inthiscase, theexpression
following the “not” operator would only select
polygons belonging to the two Glenberg soils. The
“not” operator reverses this result and selects any
polygon meeting the previous yield requirements
except the Glenberg soil polygons.

YIELD.WHEAT »>= 27 and
YIELD.WHEAT <= 32 and

! (DESCRIPTIN.NAME contains "Glenberg");

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window

The “not” operator is especially useful when there
isalarge set of values you do want to select and a
smaller, more easily-specified set of valuesthat you
don’t want to select.

= Script Editor (3268)

ESEE Y hEAs ek ?
YIELD,AHERT >= 27 and

YIELD,WHEAT <= 32 and

1_DESCRIPTH,HAHE contains “Glenberg”)3

|

‘ Cancel

] T
|lLine 1| N 0K

The ‘not’ operator reverses the next script
element that follows it (including variables,
operators, and comparison expressions).
If you want the ‘not’ operator to apply to an
entire expression (as in this example), the
expression must be enclosed in
parentheses.

Building and Using Queries

Select Using Multiple Attached Records

The LAYER tablefor the soil class polygonsin the
CBSOILS_LITE object contains information on the
different layersinatypical soil profilefor each soil.
Thereisaseparaterecord for eachlayer intheprofile,
and thus multiple records attached to each soil
polygon. Selecting elements on the basis of
attributes among multiple attached records requires
aspecia query syntax.

STEPS

M open the Vector Layer
Controls window and
the Script Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

Inthisexercise, for example, wewant to select

soil types that include weathered bedrock in | B

in LAYER[*].texture;

any part of the sail profile. This attribute is coded
by thestring “WB” inthetexturefield. If youtry to
usethe conventional selection query LAY ER.texture
=="“WB", youwill find that no polygonsare selected,
even though some soils do have weathered bedrock
inthelower part of theprofile. Thisquery structure
only checksthefirst attached record in the table for
each polygon, whichinthiscaseisusually thelayer
1 record, containing attributes for the topmost soil
layer. Subsequent recordsfor the deeper soil layers
areignored.

To query the texture field of all of the attached
records, we must use the expression
LAY ER[*].texture, which returns a set that liststhe

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window

Soil class polygons that
have weathered bedrock as
part of their typical soil

profile.
A
5

contents of the texture field from each
record attached to the current polygon.
Wethen need to determineif any of the
members of the set correspond to the
desired attribute “WB”. The easiest
way to do this is to use the keyword
“in” asalogical operator. Thequery is
true if the variable preceding the
operator isan exact match to any of the
elements in the set produced by the
expression following the operator. This
construction can be used with either
string or numeric fields.

page 15

Building and Using Queries

Find Island Polygons

STEPS

|

open the Vector Layer
Controls window and
the Script Editor
window

M choose New from the

File menu

M use the Insert

Internal.Inside > O0;

|

|

“

procedures and / or
manual entry to create
the following query:

click [OK] in the Script
Editor window

click [OK] in the Vector
Layer Controls window
repeat the above steps

using the following query:

A vector polygon that is wholly enclosed within a
larger polygoniscalled anidand polygon. Because
island polygons often have different attributes than
the enclosing polygon, processes that alter the
topology or attribute assignments of avector object
must keep track of island polygon relationships.

The Internal table for polygons includes several
fields that contain information pertaining to island
polygons. You can query thesefieldsto selectisland
polygons or polygons containing islands. The
Internal .Inside field contains the element number of
the enclosing polygon, if any. All island polygons
have anon-zero valuein thisfield. Thefirst query
therefore selects all island polygons. The
Numlslands field shows the number of islands
contained by each polygon. The second query in
this exercise selects polygons that have a

|Interna1.NumIslands > O;l

Numlslandsvalue greater than O, corresponding

to al polygons that contain islands.

Island polygons selected by
the first query. Each island
belongs to a different soil
class than its enclosing
polygon.

Two polygons in the
cBsolLs_LITE vector object
include island polygons
and were therefore
selected by the second
query.

Building and Using Queries

St

The Style by Script option allows you to specify
display characteristics for subsets of the selected
elementson the basisof their attributes. Tointroduce
the style options, this exercise retains the previous
selection query but uses a style script to set new
display parameters for all selected polygons.
(Normally you would use the All Same style option
to accomplish this.)

yling by Script

STEPS

M open the Vector Layer
Controls window

M in the Lines tabbed
panel, turn on the Draw
Lines Before Polygons
toggle button

M in the Polygons tabbed
panel, set the Style

Db ject | | Lines Polygons |Nudes I Labels | 30 |
When you are Settlng Select |By Query | Specify... Stglelﬂg Script ~| Edit...

styles by script, the Script Reference window
provides accessto additional variablesthat are used
to set display characteristics. Filllnside and
DrawBorder are numeric variablesthat are assigned
a value of 1 to fill selected polygons and draw a
border around them. FillColor$ and DrawColor$are
string variables that are used to set the color for the

option to By Script, and
click the adjacent Edit
button

M use the Variables list in
the Script Reference
window to insert the
variables needed to
construct the following

) o style script:
polygon fill and polygon border,_respect_wely. Filllnside - L,
The value assigned to these string variables | pij1colors = 100 50 o0;
(enclosed in double quotes) can be either a | praweorder = 1;
color name (red, green, blue, black, white, | DrawColors = ‘"red";

yellow, orange, brown, cyan, magenta, or gray),
or aset of RGB values (each from 0to 100%).

@'ﬂ‘%{\\-\)\"‘ 100 can e e

window to insert

\\s&
N

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window

&S R Find]

E Constants 3
Bl Yariables

Angle

DrauwBitnapPatt
the DrawBorder
DrauColor$
Draulone
DraulinePatt
DrawPattd

DrauTransPct
FillBitnapPatt
FillColor$
FillHatchPatt
FillInside =
FillPatt$
FillTransPct
LineScale

HapS5cale

SanpleRect

page 17

Building and Using Queries

Compound Style Scripts

STEPS

M open the Vector Layer

Controls window

in the Polygons tabbed

panel, set the Select

option to All, leave the

Style option set to By

Script, and click the

adjacent Specify button

M delete the previous style
script

M use the Insert
procedures and / or
manual entry to create
the script shown below

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window

)

In this exercise all soil class polygons are selected
for display, and a style script is used to define two
different sets of polygon display parameters on the
basis of the polygon area.

When you want to specify alternative actionsin a
query or style script, you must use“if-then-else” com-
mandsto explicitly definethelogic. The statements
in this script translate to “if a polygon has an area
greater than 200000 square meters, then fill it with
yellow, else (otherwise) fill it with abitmap pattern
(‘BitmapPatt4’)". (The“then” keywordisoptional.)
When more than one related statement follows a
“then” or “else” command (asin this example), the
group of statements must be enclosed within begin/
end commands (or curly brackets, { }). Omittingthe

DrawBorder = 1; begin/end commands after “else” in
DrawColor$ = 'red"; thisquery would not produce asyn-
if (POLYSTATS.Area < 200000) tax error. HOWGVGI', inthatcaseonly
then . .
begin thefirst statement would be applied
FillInside = 1; as the alternative to the “then” ac-
FillColor$ = "yellow"; tion; the remaining statements
) end would be interpreted as applying
T eqin globally to all selected polygons
FillInside = 1; (likethefirst two lines of the script),
FillBitmapPatt = 1; overriding the style parameters de-
FillPatt$ = "BitmapPatt2'; fined earlier.
end -
T
\
In order to use a bitmap fill pattern in a script,
the pattern assigned to the FillPatts
variable must reside in the User Set of
defined patterns for the object. In order to
have the pattern drawn, variables
FillInside and FillBitmapPatt must
both be set to 1. See the tutorial booklet
entitled Creating and Using Styles for
information on creating fill patterns and other
styles.
Polygons with an area of 200,000 square
meters or greater are filled with the stripe
pattern defined in BitmapPatt2. Smaller
polygons are filled with yellow. <l

page 18

Building and Using Queries

In most of the previous exercises we have used
gueries to determine which vector elements are to
be drawn in the view; elements not meeting the
selection criteriaare not drawn at all. You can also
use similar queries in the Display process to
temporarily “mark” displayed elementsinthe View.
Marked elements are shown in a specia color. [f
more than one element is marked by the query, one
of themarked elementsisdesignated asthe“ active”
element and rendered in another designated color.
In the illustration below, marked polygons are red
and the active polygon in the marked set ismagenta.

Mark by Query

STEPS

M open the Vector Layer
Controls window

on the Polygons panel
set the Style menu to All
Same and press [OK]

in the Display Manager,
click on the plus sign
next to the cesoiLs_LITE
layer entry to expand it
right-click on the
polygon element entry in
the list and choose Mark
by Query from the
popup menu

“

|

(You can set marked and active el ement colorsusing

the Options / Colors menu selection on the View

Display Add Options Help

window.)

You can mark elements by query in any TNT
process that shows the data in a View, including
the Editor. The distinction between active and
marked elementsisimportant when you are editing
geometric objects (see pages 30 and 31).

DEHiE MeaaG - BRER
B i nisplay Groop 1
2 o ch_soilq /7 (BSOILS Lite
=) /629 Lines
® K

Hark All
Unnark ALL
Invert Harked
Hark by Query,,.

Previous Harked

M in the Mark Polygons by
Query window, open
the Script tab

M select the template text
[??7?] == [???] and delete
it

M enter the Query shown
below:

WLHAB

IT.wlopen

"GOOD" ;

Q

i Y

The Mark by Query window is honmodal, which
means it provides an [OK] button that accepts
the query and closes the window and an [Apply]
button that applies the query but leaves the

window open so you can easily change the
marking criteria and re-apply the new query.

o>

R, 18 %

5
R

= Hark Polygons by Query {3268

Builder Soript |

SEHE hAaas|we

|HLHHBIT.ulupen == "GO0D";

M press [Apply] on the
Mark by Query window
after noting the marked
polygons, press the
@

|

Unmark All icon
button in the
View window

page 19

Building and Using Queries

Using the Query Builder

STEPS _ TheMark by Query window for point, line, or polygon
& isr:Ntlft](;hl\;I(;rtEIiCﬁu”g?\; tbab elementsin ageometric layer providesan interactive
Query Windowyg Y Query Builderi nterfacethar[s mpl_ifiesconstructi ng
simple or compound queries. Inthisexercissweuse

Builder |Script| the Query Builder to reconstruct the simple query

l—l—[chm TrerTatel =] used in the previous exercise.

M from the Choose Type/ | TWO Sets of controls are provided for constructing
Table menu at the top of | the expressions on the left and right sides of the
the panel, scroll down query statement. A menu in between allowsselection
WSH?BOESSQP: of the comparison operator to use. In both

expression control groups, a Choose Type/

Tablemenuletsyou select ava uetype (number,

constant, or text) or a table name for the

expression. If you choose a table, another
menu appears to the right to allow you to
) choose a field from the table. If you have

& fr:f’e"r:uthi Cfgfzzsvﬁ'igd chosen atable and field for the left side expression,
choose wiopen theright side expression menu defaultsto the Value

setting, and an adjacent menu provides a

selection of al values present in the selected

field. Textfieldsshow theleft sideexpression

M from the Choose menu | (with yellow background) and right side expression
to the right of the Value .
field in the middie of the | (Cyan background), and the text field at the bottom
panel, choose GOOD shows the completed query.

M note the full query
statement shown at the

= Hark Polypons by Query

= Hark Polypons by OQuery (3268)

Builder ‘Scriptl

[HLHABIT ~|[tChoose Fieldl x|

+= B {} %}(B [Functionl

[HLHABIT

Iis equal to

I\'alue: ﬂl[[ﬁhnose] :I

Controls for left side of query statement

bottom of the panel S oo g e G

M press [Apply] on the — i
Mark by Query window il e
|HLHREIT ||wLopen =l
. . =X O I[F tionl
Expression for left side —{ | i o A P
'IIILHHBIT.uleen
Comparison operator menu T e ;l/
Controls for right side ——— [value: ~|[6oon ;I/ ¢
of query statement — = [tFunction menu o
query ‘I#} % =¥ @ X [|Function] available
“GooDn"
. ' N values for
Expression for right side 0] 08| o] Uroor| Romove] Clear selected
| [HLHABIT,ulopen == "GOOD™ field
_—
Constructed query deletes high- deletes entire
lighted text query

page 20

Building and Using Queries

Compound Queries with the Builder

You probably noticed that the controls on the
Builder panel change to reflect your selections
on other controls. These changes are designed to
offer appropriate choices and to guide you through
construction of your query.

Once you have a complete ssmple query statement,
you can go on to construct a compound query by
pressing the AND or OR button above the query
statement text field. This action clears the builder
menus and text fields above for the left and right
expressions, but retains the previous query
statement in the query text field and adds the
appropriate compound query keyword. You canthen
use the expression controls to construct the second

statement for the compound query.

The queries on this and the previous
page use fields in the wildlife habitat
(WLHABIT) tablethat list the suitability
of different soil types for supporting
different types of vegetation communities
and associated wildlife habitat. Thequery
on this page marks soil polygons that
could support good quality open and
woodland habitat.

Elark Polygons by Query (3268) _ID
Builder ‘Scriptl
[1LHABIT = |[wLuood = I
=% = OFX [[tFunction =
[HLHRBIT , uluaod
Iis equal to :I
[value: |]
+=S@%3§7 ({})%}(B I[Functinn] ﬂ
|~Goon~
M E Group| Ungroup Renove | Clear
HMLHABIT ,wlopen == “GOOD™ Y
and
HLHABIT.wlwood == “GOOD*

Group| Ungroup Renove | Clear

HLHABIT,wlopen == “GOOD*

STEPS

“

“

press the AND button on
the Builder panel

in the Choose Type/
Table menu for the left
expression, choose the
WLHABIT table

M in the Choose Field

menu, choose wiwood

M from the Choose menu

for the Value of the
right-side expression,
choose GOOD

note the full compound
query shown at the
bottom of the panel
press [Apply] on the
Mark by Query window

T

i

after noting the marked
polygons, press the
Unmark All icon

button in the @
View window

page21

Building and Using Queries

Query Calculations with the Builder

STEPS

]

)

press the Clear button
on the Builder panel

for the left side
expression, choose the
YIELD table and the
WHEAT field

press the Multiply

icon button in the &
left side

expression controls
return to the Choose
Type/Table menu for this
expression (which still
shows YIELD) and
choose Number:

enter 4 in the field that
appears to the right of
the menu

choose is greater than
from the comparison
operator menu

for the right side
expression, choose the
YIELD table and the
OATS field

press the Multiply

icon button in the &
right side

expression controls
return to the Choose
Type/Table menu for this
expression (which still
shows YIELD) and
choose Number:

enter 3.5 in the field that
appears to the right of
the menu

M press [OK] on the Mark

M after noting the

by Query window
marked polygons, @
press the Unmark

All icon button in the
View window

The Query Builder can also be used to construct
gueries that incorporate numerical calculations.
When you select anumeric database field for one of
the expressions, aset of icon buttons become active
that allow you to insert aarithmetic operator into the
expression. To insert a numeric value after the
operator, use the same menu you used to select the
table, but this time select the value type Number,
which then allows you to enter the desired numeric
value. You can also usethe Function menuto insert
numerical functions such as round, square, and
absolute value.

A query constructed using the Builder isalso shown
on the Script tabbed panel, where you can perform
further editsif necessary to construct more complex
queries.

EMark Polygons by Query (3268)

Builder ‘Script |

INunber: ﬂl 4
d=nwaw X [O I[Fum:tiun] hd]

[YTELD WHEAT = 4

Iis greater than :I

=
d=3 =& () ¥ ¥ [[[Function]]
[YIELD.0ATS * 3.5

ME Group| Ungroup Renove | Clear

|‘I'IELI].IIHEHT # 4 > YIELD.OATS = 3.5 F
|

INunber:

page 22

Building and Using Queries

Census Boundaries in TIGER Data

Vector objects imported from the US Census
Burea'sTIGER/ Linefilesare made up of line seg-
ments representing natural and manmade physical
featuresaswell aspolitical boundaries. The bound-
aries of census tracts (and equivalent Block
Numbering Areas, or BNA's) and their component
census blocks usually coincide with other map fea
tures and are not explicitly identified by a Census
Feature Class Code (CFCC) like the basic map fea-
tures.

Census block boundary lines can be selected for
display or extraction using aquery that selectslines
for which the block numbers on the left and right
sideare not the same. Blocksthat have been subdi-
vided retain the same block number, but areidentified
by different lettersinleft and right block suffix fields;
the second set of statements in the sample query
selects these boundaries. Finally, blocks in adja
cent BNA's can have the same number, so the fina
statement selects lines separating different BNA's.
If any of these three conditions is met, the line is
selected.

STEPS

M choose Display / New /
2D Display from the
Display Manager

M select the aLamepa object
from the Ticer Project
File

M open the Vector Layer
Controls window for the
Alameda vector, set the
Select option in the
Lines panel to By Query,
and press [Specify...]

M use the Insert
procedures and / or
manual entry to create
the query shown below

M click [OK] in the Script
Editor window

M click [OK] in the Vector
Layer Controls window

M when you are finished
with this exercise,
minimize the view for
Display Group 2

Basic_Data.Block Left <>
or (Basic_Data.Block Left
and Basic Data.BlockSuff Left

or Basic_Data.BNANum Left <>

Basic_Data.Block_Right
Basic_Data.Block Right

Basic_Data.BlockSuff Right)
Basic_Data.BNANum Right;

<>

Raw TIGER /tine data
for a portion of Alameda
County, California.

iy

The same area with
census block
boundaries selected

y query.

Y

b

Building and Using Queries

Polygon Adjacency Query: Logic

STEPS

]

]

]

open the Vector Layer
Controls window for the
CBSOILS_LITE layer

in the Polygons tabbed
panel, set the Style
option to ClassStyle

set the Select option to
By Query, and click the
adjacent Specify button
delete the previous
query in the Script Editor
window

use the Insert
procedures and / or
manual entry to enter
the query shown on the
next page

M click [OK] in the Script

Editor window

M click [OK] in the Vector

Layer Controls window

Vector object cesoiLs_LITE
with all polygons of classes
SrD and Sa selected (for
comparison with illustration
on the next page).

Class SrD

Class Sa

A selection query can also make use of the
topological information associated with a vector
object. Eachlineinavector abject hasabeginning
node and an ending node, which define a left and
right side for the line. Each polygon is made up of
specificline elements, and the Internal tablefor lines
includes fields that contain the element numbers of
the polygonsthat lie on either side of theline. The
GetVectorPolyAdjacentPolyList() function (in the
Vector Functionlist in the Script Referencewindow)
uses this information to determine which polygons
are adjacent to the current polygon. This function
can be used in a query to select polygons that are
adjacent to specific polygon classes.

As an example, let’'s examine a query for the
cBsoILS_LITE vector object that selects polygons
belonging to soil class“SrD” that are also adjacent
to polygonsof class“ Sa.” Tobeconsidered adjacent,
the polygons must share a common line boundary,
not just acommon node. The general strategy used
insuch aquery isasfollows:

1) Definethe classto select.

2) If apolygon bel ongsto the sel ected class, then do
the subsequent steps (test for adjacency), otherwise
rejectit.

3) Get the list of polygons that are
adjacent to the current polygon.

4) Check the classassignment for each
adjacent polygon. If any of themmatch
the defined adjacent class, select the
current polygon for display. If none
match, reject it.

The syntax for thisquery isshown and
explained on the next page.

page 24

Building and Using Queries

Polygon Adjacency Query: Syntax

10 return O0;
11 end
12else return O0;

1if (CLASS.Class == "SrD") then

2 Dbegin

3 array numeric polylist [10]; numeric numpolys; numeric 1ij;
4 numpolys = GetVectorPolyAdjacentPolyList (Vect, polylist);
5 for i = 1 to numpolys begin

6 numeric polynum = polylist[i];

7 if (Vect.poly[polynum] .CLASS.Class$ == "Sa")then

8 return 1;

9 end

1. Conditional selection of class SrD polygons
for subsequent testing.

2. Begins the processing loop to check the

3

11. End of polygon adjacency loop.
12. States that the query is false for a

specification indicates that the target

field is a string field.) If the classes

match, then... i%
. The “return 1" statement explicitly states

that the query is true for a polygon

satisfying the above condition, so the

polygon will be selected for display.

9.
10. If all adjacent polygons fail the class

class of adjacent polygons.

. Defines a one-dimensional array called “polylist” to hold a list of the element numbers

of polygons that are adjacent to the current polygon. Initializes the array size at 10
elements (it is resized automatically by the function in the next statement). Also
declares a variable to store the number of polygons adjacent to the current polygon
and a numeric counter variable for the processing loop.

. Calls the GetVectorPolyAdjacentPolyList() function, which finds the element numbers

of the adjacent polygons and stores them in the “polylist” array. It also returns the
number of adjacent polygons, so the function value is assigned to “numpolys”. The
predefined variable “Vect” is used to indicate the current vector object.

. Begins a processing loop to examine the class of each polygon in the array. The

loop is run once for each element in the array, beginning with the first position (array
index 1) and continuing to the last position (specified by the current value of variable
“numpolys”). In each loop the variable “i” is assigned the value of the current array
index for use in the next statement.

. Assigns the number of the current adjacent polygon (specified by its index in the

array) to the numeric variable “polynum”.

. Looks up the class of the current adjacent polygon and compares it to the specified

adjacent class. The database specification is in the form
“Object.database[record#].table.field”. (The "$” at the end of the database

End of array processing loop.

test above, the “return 0” statement
states that the query is false.

Polygons of class SrD that aref
adjacent to those of class Sa.

Fif oS Tl k|

polygon not meeting the initial class
selection condition in statement 1.

page 25

Building and Using Queries

Selection Query for Dynamic Labels

STEPS

M open the Vector Layer
Controls window for the
cBsoOILS_LITE layer

in the Dynamic Labels
section of the Polygons
tabbed panel, set the
Text option to By Script
and press the adjacent
Specify button

enter the query shown
below

]

)

TheDisplay processincludesafeatureto draw labels
dynamically intheview for elementsin ageometric
object. The text for each element can be read
automatically fromafieldin arelated databasetable
that you designate. However, you aso have the
optionto useaquery to generatethetext. Thequery
might rework the text from one or more database
fields, or limit thelabel sto aspecific set of elements.

In thisexercise we use aquery for dynamic polygon

if (POLYSTATS.Area >
POLYSTATS.CompactRatio
print (CLASS.Class) ;

50000 and

labelsthat usestwo criteriatolimit the
label set: only larger polygonsthat are
not too long and narrow are labeled.

< 1.5)

M set the Position option to
Always Inside

press [Text Style]

press [Font] in the Style
Editor window and
choose mallard.of

set the Ascender Height
value to 3.00 millimeters
At Scale = None

click [OK] on the Style
Editor window and on
the Vector Layer
Controls window

]
]

The CompactRatio
(compactness ratio) field
records the ratio of the

boundary length of the polygon
to the perimeter of a circle with

equivalent area. The minimum
value of 1.0 would indicate a
circular polygon. The higher
the compactness ratio, the
more the polygon differs from
a circular shape.

These selection criteria are based on
the Area field and the CompactRatio field in the
POLY STATStable (see note below | eft).

The query for a dynamic label in a display has a
special syntax. The text for the label must be
specified using the SML print() function as shown.

Only larger and more compact polygons are labeled.

NOTE: The TNT Editor includes an Auto Generate Label operation for vector
objects to create permanent label elements using attributes for points,
lines, or polygons. The label text can be set from a single field (By Attribute)
or using a query (By Script). The label text created by such a query must be
assigned to a predefined string variable, Label$, in order to be returned as
the label: Label$ = sprintf("%d", CLASS.ClassArea);

page 26

Building and Using Queries

Computed Fields from Multiple Records

Scripts can aso be used to define the values for
virtual fieldsin databasetables. In many casesthese
scripts need only create simple arithmetic
combinations of other fieldsin the samerecord. The
task in this exercise is more complex: to create a
computed numeric field in the polygon Class table
for cesoiLs_LITE that shows the total area for each
sail type.

Polygon areas are stored in the POLY STATS table
for individual polygons, but we are creating the
computed field in the Class table, which has one
record for each soil type. The script shown hereis
designed to sum the polygon areasfor each soil class
and return that sum as the computed field value.

The script defines a numeric variable “sum” that is
used to sumtheareasinthe POLY STATS.Areafield.
Thisvariable must beinitially reset to avalue of 0.0
for each class. The variable “num” is assigned a
value (for the current soil class) equal to the number
of attached recordsin the POLY STATStable. This
variableisused to set the number of iterations of the

STEPS

M right-click on the
polygon element entry
for the vector in the
Display manager and
choose Edit Relations

M in the Database Editor
window, right-click on
the Class table box and
select Properties from
the dropdown menu

M in the Table Properties
window, click the
Add Field icon E'
button

M on the Field panel,
highlight the default
name in the Name field
and type ClassArea

M on the Field panel,
select Computed from
the Field Type menu and
click [Edit Expression]

M enter the script shown
below in the Query
window

loop that sums the areas. :
numeric sum =
num = SetNum(

ClassArea

£ Table Field | Constraints | for i = 1 to num begin

Mome e — sum = sum + POLYSTATSI[i].Area;

0.0; numeric i, num;
POLYSTATS [*]) ;

e end
re t}urn sum;
7

Field type|Conputed x| Edit 4«pressinn... 4
Width| 12 Places| 2
Unit Type | Units In File
Usage = =l
Read_on Hidden i Prinary key | Indexed I Unique

=CASINS_Lite / Polyponilatahiis (3 =

Table Edit Record Field Help | I
RN 42

WS P Sl bl @ = T et oh
LI class ClassArea

| [Be | 46905.84 X
| B [456107.41

j‘;;— - ™ Class table with added
| [BgB [d66591.80 computed field showing
]‘,::E— e the summed area for

| (B8 | 504674.86 ‘ each soil type.

48 of 48 records shi

M click [OK] in the Query
window

M enter 12 in the Width
text box and 2 in the
Places text box

M click [OK] in the Table
Properties window

M double-click on the box
for the Class table to
open it

M choose Table / Close to
close the Class table

M choose File / Close to
close the Database
Editor table

page 27

Building and Using Queries

String Expression Fields

STEPS

]

]

choose Tools /
Database / Edit from the
TNTmips menu

navigate to and select
the cesecT object in the
cB_secT Project File

A string expression field is a special type of virtual
fieldinadatabasetable. Thesimplest useof astring
expression field is to link the contents of a string
field in another related table into the current table.
Theexpressioninthat caseissimply the appropriate
TABLE.FIELD reference. You can also use string

M turn on the Polygons o .
radio button in the expressions to merge the contents of several string
Element Type window fields(from oneor several tables) into one new field.

M in the Database Editor For exampleatablecaled NAME could have separate
window, right-click on fields for first and last names. You can usethe *+”
the Sections table box .
and select Properties (add) operator to merge these strings. The

M in the Table Properties expression NAME.FIRST +* ” + NAME.LAST
window, click on the would produce entries with the form “John Doe”.
Range field in the fist The expression must include any separatin
and click the Add P : y Sep 9
Field icon button +é characters (spaces, commas) in quotes, as shown.

@ onthe Field You can use a merged string expression field to
panel, highlight the providetext for moreinformative DataTipsor labels.
default name for the
new field and type Theexpression you usein thisexercise employsthe
SecTwpRng . sprintf() function, which allows you to format

M select String Expression
from the Field Type comp_lex string expressions more gasly. The first
menu and click Edit function argument is a control string (in quotes),

- Extpfefﬁ'on o sh whichisfollowed by the string field references. Each
ove inetﬁg”(gu :ryown of the “%s’ entries in the control string stands for
window one of thelisted string field references. The control

string can also incorporate inserted text, spaces, or
punctuation.
sprintf(“Sec %s Twp %s Rng %s”, Sections.Section,
Sections.Township, Sections.Range);

M click [OK] in the Query il L)
window Table Field | Constraints |

M enter 25 in the Width text Nane [SecTupRng
box Description

M click [OK] in the Table
Properties window

M double-click on the Field tgpelstring expression x| Edit enpression...
Sections table box to Midth| 25 [0
open it =itsect 7 Polyllata / Sections (3228) mE

M choose Table / Close to e B Gl o Help Formatted
close the Sections table Ea=E text created

Section Tnunship|Range SecTupRng by the String
_|1 31N |51Il Sec 1 Tup 31N Rng 51H 7|5 .

i 310 520 Sec 1 Tup 31H Rng 52W |J expression.

o 31N |51Il Sec 10 Tup 31N Rng 51H

page 28

Building and Using Queries

Creating Cross-Element Expressions

STEPS

Virtual fields in the element databases of a vector
object can access and use attributes of other types
of elementsin the same vector object. For example,
virtud fieldsfor line elements can reference attributes
of the each line's start and end node or the polygon
totheleft and right of each line. The PipeLineData
table shown in this exercise includes virtual fields
that show the Start Node and End Node of each line
element and others that show the elevation of each
of these nodes.

The expressions used to create these cross-element
virtual fieldsrequire aspecific structure and syntax.
You can easily create the required expression using
the Insert Field window. Use the Element menu on
thiswindow to select therelated element from which
you want to acquire the attributes, then select the
table and field to automatically construct the
expression, which can then beinserted into the Script
Editor window.

_10[<]

Help

= Pipel ines / Linellatabase 7 Pipel inellata (3228)

Table Edit Record Field

B2 =

LineNane

LengthXY |StartNode |EndHode (StartElev |[EndElev

|Hornal Blvd Hain 229.4 1 7 1207.0| 1203.2]4
_[Hornal Blvd Hain 3 13 11925 1189.2 |-
_[South Street 5 a 29 1209,0) 1208.5
= Em——— s 5 9] 1184,2| 1181.6
= Field Options (3229 3 5 1293.0) 1207.9
Label |StartHode Z] 120s.2] 1192.5)
-

Decinal Places I 0 |

1 Do not compute statistics

Edit enpression,..

= Script Editor (3778)

SHE ' DAAE (a0 ?

Yect.node[Internal,StartHodel. Internal .ElenHun

= Inzert Field (3228 MmE

Elenent IStart Hode :I

Table |Internal :I

Field IElenNun x|
Insert | Close

Cross-element
expression created using
the Insert Field window's
Element menu

|

“

choose File / Open
Database on the
Database Editor window
navigate to and select
the piPELINES Object in the
piPES Project File

turn on the Lines radio
button in the Element
Type window

in the Database Editor
window, right-click on
the PipeLineData table
box and select Open
from the dropdown menu
in the PipeLineData
tabular view, right-click
on the StartNode field
and choose Field Options
from the popup menu

in the Field Options
window, press [Edit
Expression]

in the Script Editor
window, press

the Insert Field &_
icon button

in the Insert Field
window, choose Start
Node from the Element
menu

select Internal from the
Table menu, then
ElemNum from the Field
menu

press [Close] on the
Insert Field window, [OK]
on the Script Editor
window, and [Cancel] on
the Field Options
window

when you have
completed this exercise,
close the PipeLineData
tabular view, then
choose File / Close from
all Database Editor
windows

page 29

Building and Using Queries

Queries to Check Digitizing Artifacts

& B Crow Butte LG Hydrology Marking queries can aso be useful when you are
= PR creating or editing a vector object using the
R 23 43 :::;:1;11 TNTmips spatial data Editor. Complex vector
=~{§1f Tnwert Marked objects can contain digitizing errors such as line
Mark by Query... overshoots, unclosed polygons, and sliver
polygons Many of theseflawsarenot visible except
at high zoom levels, which makes manual checking

Layer Mangager on the g . .
entry for the element type difficult and ti me-consuming. You can speed up Fhe
you want to edit. Choose search for potential topology problems by using
Mark by Query to open the [queriessuch asthe examplesbelow. Theright mouse

standard Query Editor so button menu for each element type in an editable
you can enter a selection

Right-click in the Editor

query to mark (highlight) layer hasaMark by Query option that aIIowsyou to
elements as candidates for | create and apply a selection query for a particular
editing. element type.

OVERSHOOTS

Overshoots are short line segments that incorrectly
extend beyond a line intersection. If you have run the
Standard Attributes process for the vector object, you
can use a selection query based on line length to select
all very short lines for examination and possible
removal:

LINESTATS.Length < [your length value]

=]

UNCLOSED POLYGONS

In a vector object containing a network of polygons, a gap
between two lines that should intersect may leave a single
polygon where two separate polygons should exist. Lines
that fail to close a polygon can be found by query because
they have the same polygon on both sides:

Internal.LeftPoly == Internal.RightPoly

SLIVER POLYGONS

Double-tracing polygon boundaries can create
extraneous sliver polygons along the boundary of two
contiguous polygons. Sliver polygons usually have a
much smaller area than the main polygons, and are
usually highly elongate (with a high Compactness Ratio).
Use a combined query on the Area and CompactRatio
fields in the POLYSTATS table to select sliver polygons:

POLYSTATS.Area < [your area value] or
POLYSTATS.CompactRatio > 3.00

page 30

Building and Using Queries

A marking query executed in the spatial data Editor
or in Display often marks more than one element.
One of these marked elements is designated the
“active” element; the active and marked elements
are drawn in different colors in the View. Editing
operations can be applied to either the active or the
marked elements. You can usethe PreviousMarked
and Next Marked icon buttons on the View window
to step forward and backward through the set of
marked elements, making each one active in turn.
Theview isautomatically repositioned (if necessary)
to display the current active element. This“pan by
query” feature allows you to remain zoomed in to
examine (and perhaps edit) each element while easily
stepping through the selected set.

=Display Group 2 — View 1 {3768) _[C[]

View Tools GPS Options HotKeys

ROSRAAHOBUAD 2[4 wa@ BARKE
Ny]

Use the Previous Marked
and Next Marked icon
buttons to pan forward or
backward through the set

of selected elements. Active

/ é element

Marked [— — T —

elements

>

Tine to draw: 0,032 s{@‘" 122 04 23.21 N 37 43 04.76 1:3029

Pan by Query

STEPS

]
]
]

restore the View for
Display Group 2

open the Vector Layer
Controls window

set the Select option in
the Lines panel to All
and click [OK]

zoom in several times
until the scale shown in
the view's status bar is
approximately 1:3000 or
1:2500

click the icon for the
Alameda layer entry to

expand it
b

click the arrow
icon button for

lines to enable selection
right-click on the lines
entry and choose Mark
by Query from the
dropdown menu

enter the following
query in the Mark by
Query window:

LINESTATS.Length < 50

]
|

click [Apply] on the Mark
by Query window
click the Next
Selected icon
button on the View
window

wh

The exercises in this booklet have introduced the fundamentals of the structure
and syntax of database queriesfor usein TNTmips, TNTedit, and TNTview. The
guery language is a subset of the Geospatial Scripting Language (SML) used in
TNTmips, and shares the same syntax. In addition to the documentation on
gueries cited on page 2, you may wish to consult the tutorial booklet Writing
Scriptswith SML and Using CartoScripts to expand your scripting capabilities.

page 31

Advanced Software for Geospatial Analysis

Microlmages, Ine. publishesacompleteline of profesdional software for advanced geospatial deta’

visualization; analysis, and publishing. Contact us or visit our web site for detailed product

information.

TNTmipsPro

TNTmipsProisaprofessiona system for fully integrated GIS, image

analysis, CAD, TIN, desktop cartography, and geospatial database management.

TNTmipsBasic
TNTmipsFree

TNTmipsBasicisalow-cost versionof TNTmipsfor small projects. §
TNTmips Freeisafree version of TNTmips for students and professionals

with small projects. You can download TNTmips Free from Microlmages” web site.

TNTedit

TNTedit providesinteractive toolsto create, georeference, and edit vector, image,

CAD, TIN, and relational database project materialsin awide variety of formats.

TNTview TNTview hasthe same powerful display.featuresas TNTmipsand is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlasletsyou publish and distribute your spatial project materialson CD or

DVD at low cost. TNTatlas CDs/DV Ds can be used on any popular computing platform. -

Index
@jacent POlygoNS.......vvvvriririeeeann. 20,21 Insert Field window..........c.cccccoevuvnnns R
arithmetic operations............cccoevvevveeinens 9 InsertOperator Window..........cccceevvervenenne 5
auto generate labels........cccceeeevevnnnnne 26 island polygons.........cccoovviiniennnnns 15
assignment statement logical operators (and, or, not)........ 10,14
COMMENES.....cveveeererrrnenns mark by query.........cccceevvvvvvinnnnn. 19,31
comparison operators. multiple attached records................. 15
equal 10, == OPENING & QUENY...cuveurerieeereeeneeseesseseennens 9
greater than, >.... pan by query.

not equal to, <>.......
CONLAINS....eeveeeiiiiieee e
compound queries..............
computed fields........ccoovvveriviiieiiiennns
cross-element expression...
database query, defined........cccovvevevreenenne.
dynamic labels.........ccooevvviiiiiiiinnnnns

editing
overshoots........cccceeeeeee, 30
sliver polygons........ccccevvveiicineenns 30
uNdershootS.......ovveeevvveiiiiiiiee e, 30

query builder
SAVING @ QUENY....oeieeeeeeereeesieereeeieeeeeneees
select by query.......ccoceevevnnnnn.
string field.......cccoeveeenne

string expression field..
string variables.......ccooevervecieieie s
style by SCript.....cccooeveveieiieniennn.
syntax, checking.......
Table[*] expression...

WWW.miCcroi mages.com

	Before Getting Started
	Welcome to Building and Using Queries
	Selecy by Querying a Single Field
	Using the Insert Operator Option
	Using the Insert Field Option
	Querying a String Field
	Checking Query Syntax
	Using Calculations in Queries
	Compound Queries
	Using the "not equal to" Operator
	Using Comments and Variables
	Using String Variables
	Using the Logical "not" Operator
	Select Using Multiple Attached Records
	Find Island Polygons
	Styling by Script
	Compound Style Scripts

	Mark by Query
	Using the Query Builder
	Compound Queries with the Builder
	Query Calculations with the Builder

	Queries on Topology
	Census Boundaries in TIGER Data
	Polygon Adjacency Query: Logic
	Polygon Adjacency Query: Syntax

	Selection Query for Dynamic Labels
	Virtual Fields
	Computed Fields from Multiple Records
	String Expression Fields
	Creating Cross-Element Expressions

	Queries to Check Digitizing Artifacts
	Pan by Query
	Index and MicroImages Product Information

