
page 1

Building and Using Queries

Building and
Using Queries

with

TNTmips®

TNTedit™

TNTview®

Tutorial
Q
U
E
R
I
E
S

page 2

Building and Using Queries

Before Getting Started

You can print or read this booklet in color from MicroImages’ web site. The
web site is also your source for the newest Getting Started booklets on other
topics. You can download an installation guide, sample data, and the latest
version of TNTmips.

http://www.microimages.com

This booklet shows you how to construct queries in the TNT products to utilize
the attribute information attached to your vector, CAD, shape, and TIN objects.
This series of step-by-step exercises leads you through the required structure
and syntax of queries, progressing from simple one-line examples to queries with
multiple condition statements and processing loops.

Prerequisite Skills This booklet assumes that you have completed the exercises
in the tutorial booklets Displaying Geospatial Data and TNT Product Concepts.
Those exercises introduce essential concepts and skills that are not covered
again here. Please consult those booklets for any review you need.

Sample Data The exercises in this booklet use sample data that is distributed
with the TNT products. If you do not have access to a TNT products DVD, you
can download the data from MicroImages’ web site. In particular, this booklet
uses sample files in the QUERY data collection. Make sure that you have a copy of
the sample data on your hard drive so changes can be saved when you use the
objects in these files.

More Documentation This booklet is intended only as an introduction to the
use of database queries. Details of the process can be found in a variety of
tutorial booklets, Technical Guides, and Quick Guides, which are all available from
MicroImages’ web site.

TNTmips® Pro and TNTmips Free TNTmips (the Map and Image Processing
System) comes in three versions: the professional version of TNTmips (TNTmips
Pro), the low-cost TNTmips Basic version, and the TNTmips Free version. All
versions run exactly the same code from the TNT products DVD and have nearly
the same features. If you did not purchase the professional version (which requires
a software license key) or TNTmips Basic, then TNTmips operates in TNTmips
Free mode.

Database queries can also be used to control the display of geospatial objects in
TNTview and to select elements for editing in TNTedit. All exercises in this
booklet can be completed in TNTmips Free using the sample geodata provided.

Randall B. Smith, Ph.D., 4 January 2012
©MicroImages, Inc., 2000-2012

page 3

Building and Using Queries

Welcome to Building and Using Queries

STEPS
make sure that you have
a copy of the sample
data in the QUERY data
collection on your hard
drive
launch TNTmips
choose Main / Display
from the TNTmips menu

The exercises on pages 4-9
introduce the structure of
simple query statements,
comparison operators, and
some useful tools for
building and checking
queries. Pages 10-16
cover query structures
involving compound
statements, the use of
variables and comments,
and using queries to check
database record
attachments. Styling by
Script is introduced on
pages 17-18, along with the
use of conditional “if-then-
else” constructions. Pages
19-22 describe marking
displayed elements by
query using the interactive
Query Builder. Examples of
queries based on the spatial
and topological attributes of
vector objects are found on
pages 23-25. Pages 26-29
show scripts to create
dynamic labels in displays
and virtual fields in
database tables. Pages 30-
31 provide examples of
queries that are useful in
editing vector objects.

TNTmips gives you great flexibility to use the
database attributes of geometric (vector, CAD,
shape, and TIN) objects to control the display and
printing of the object, or to select elements for use in
various processes. Database queries provide the
most complete and versatile means to utilize this
attribute information.

A database query is a set of instructions defining
attribute criteria that are used to select records from
a database. The specific spatial elements (such as
lines or polygons) to which those records are
attached are then automatically selected for the
current process. A query applies to a specific element
type, and you can simultaneously use separate
queries for different element types in an object. In
Spatial Display you can use a query to temporarily
mark (highlight in color) certain elements or to select
which elements should be displayed. The attribute
information you refer to in queries can be qualitative
(such as a class name), or quantitative (such as crop
yield values).

Queries must use a standard “grammar and syntax”
that TNTmips understands. The query language
used is a subset of the TNT Geospatial Scripting
Language (SML). You compose queries in the Script
Editor window, which simplifies construction of valid
queries by letting you choose fields from the
available database tables and insert symbols and
functions from a Script Reference window that
outlines the correct syntax. The Script Editor also
provides a syntax checker to help you find errors
before applying the query.

Most exercises in this booklet use queries to select
or style elements in a vector object for display. But
keep in mind that queries can be used in any process
that selects component elements in geometric
objects. In addition, you can use queries in some
raster processes to select cell values for processing.

page 4

Building and Using Queries

Select by Querying a Single Field
STEPS

click on the Add
Objects icon
button on the Display
Manager window’s
toolbar
select the CBSOILS_LITE

object from the CB_SOILQ

Project File in the QUERY

data collection
click on the Layer
Controls icon in the
CBSOILS_LITE layer entry
in the Display Manager
in the Vector Layer
Controls window, set
the Select option on the
Polygons panel to By
Query and click on the
adjacent Specify button

 in the Script Editor
window, type the
following text exactly
(including capitalization):

YIELD.WHEAT > 35;

click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window
to accept the display
settings and display the
vector object

The simplest form of query selects a specific type of
spatial element (such as polygons, lines, or points in
a vector object) on the basis of the values for a single
database attribute. In this exercise you enter a simple
query that selects soil map polygons in a vector object
for display. Each soil type has associated values for
maximum potential yield for several crops. The query
selects polygons for which the potential crop yield
for wheat is greater than 35 bushels per acre. The
query statement has the form:

Attribute Comparison
Operator

Value

The query must specify which database table con-
tains the attribute information, and in which field it
is found. This “attribute location” information must

be entered in the form
TABLE.FIELD. The
value in this example is

a simple numeric value, and the comparison operator
is the “Greater than” operator (>).

Display options for this vector object are set to draw all
lines, so the outlines of all soil polygons are drawn. The
polygons selected by the query are filled with colors and
fill patterns that are based on the soil type and that were
previously set up for display By Attribute. Several soil
types meet the wheat yield selection criterion. Unselected
polygons remain unfilled.

page 5

Building and Using Queries

Using the Insert Operator Option
The previous query selected soil polygons belonging
to several soil type classes. Let’s refine the selection
criterion so that the query selects only those polygons
with a potential wheat yield of exactly 38 bushels
per acre. To specify this selection criterion, use the
“Equal to” operator (==, double equal sign) in the
query statement. You can simply type the operator,
or open the Script Reference window, which lets you
choose the operator from a scrolled list and insert it
into the query statement at the current cursor
location.

STEPS
reopen the Vector
Layer Controls
window
click on Select: [Specify]
in the Polygon Options
panel
highlight “> 35” in the
Script Editor window
and press <Delete>
press the Script
Reference icon
button
in the Script Reference
window, expand the
Operator list and select
the “==” operator,
then press the
Insert icon button
in the Script Editor
window, type 38 to the
right of the operator,
then click [OK]
click [OK] in the Vector
Layer Controls window
to accept the display
settings and display the
vector object

Fewer soil classes meet the more
restrictive selection criterion in the
revised query statement.

Insert the operator from the
Script Reference window.

Type the
value to be
matched.

Script Reference
icon button

The text field describes
the function of the
selected operator.

page 6

Building and Using Queries

Using the Insert Field Option
STEPS

open the Vector Layer
Controls window and
the Script Editor
window
select YIELD.WHEAT
in the existing query and
press <Delete>
press the Insert
Field icon button
in the Insert Field
window that opens,
choose YIELD from the
Table menu
choose OATS from the
Field menu, then click
[Insert]
click [Close] on the
Insert Field window

This query selects several of
the same soil classes selected
by the first query (page 4).

You can also use the Insert Field icon button in the
Script Editor to help construct or modify queries.
This button opens the Insert Field window, from
which you can choose the Table and Field and
automatically insert the attribute location information
into your query statement in the correct form.

Press the Insert
Field icon button
to open the
Insert Field
window, which
has a menu with
all available
database tables
for the selected
element type.

Choosing a Table...

Choosing a field creates
the TABLE.FIELD entry;
click the Insert button to
insert it into your query
statement.

Change the value on the right
side of the statement to 43.

change the value
on the right side of
the query
statement to 43,
then click [OK]
click [OK] in the
Vector Layer
Controls window ...updates the Field menu to

list the fields in that table.

page 7

Building and Using Queries

Querying a String Field
The query language used in the TNT products is
case-sensitive. If the table CLASS contains a field
called Class, the TABLE.FIELD entry must read
CLASS.Class; if you enter it as CLASS.CLASS, the
query process will not find the field and will indicate
there is an error in the query. Using the Insert Field
procedure helps you avoid this type of problem.

The database fields you have used in your queries
so far have contained numeric data. The YIELD
table for CBSOILS_LITE also contains a field named
SYMBOL with soil type symbols in String format.
The term “string” is short for “character string,”
which means that the field is not evaluated
numerically, and can contain text and other
nonnumeric characters. String fields may contain
numerals (for example, CLASS1), but they are read
as characters rather than as numbers. String values
in query statements must be enclosed in double
quotes and are also case-sensitive.

STEPS
open the Vector Layer
Controls window and
the Script Editor window
select YIELD.OATS in
the existing query and
press <Delete>
use the Insert Field
procedure to insert
YIELD.SYMBOL on the
left side of the query
statement
change the value on the
right side of the query
statement to "KaB"
(including the double
quotes), then click [OK]
click [OK] in the Vector
Layer Controls window

Selected soil polygons
belonging to class KaB.

Enclose a string value in double quotes.

The SYMBOL field contains string values.

The syntax highlighting in the Script
Editor window shows all string
values in cyan color.

page 8

Building and Using Queries

Checking Query Syntax
STEPS

open the Vector Layer
Controls window and
the Script Editor
window
manually change the left
side of the existing query
statement to
CLASS.CLASS (all
capitals)

press the Check
Syntax icon
button

The rules concerning capitalization and use of
quotes for string values are examples of the syntax
of the TNT query language. Query syntax is checked
automatically when you click [OK] to execute the
query. If the query contains a syntax error, the Script
Editor remains open and an error message is
displayed.

You can check the syntax of a query before
executing it by pressing the Check Syntax icon
button in the Script Editor. The process can find
misspellings, missing parentheses or other

symbols, or references to nonexistent database fields.
The process starts checking at the beginning of the
query. If no syntax errors are encountered, the

message line at the
bottom of the Script
Editor window reads
“Syntax OK.” If a syntax
error is detected, a

Message window opens to show an error message.
In this example, the query checker detected that there
is no database field named CLASS in table CLASS.
After correcting a syntax error, you can use the
Syntax option again to check for errors in the
remainder of the query.

note the error message,
then press[OK] on the
Message window
select CLASS.CLASS
in the query statement
and press <Delete>
press the Insert Field
icon button and insert
CLASS.Class into the
query statement
press the Check
Syntax icon
button
note the “Syntax OK”
message in the status
line at the bottom of the
Script Editor window

The “Syntax OK”
message appears if
no errors are found.

page 9

Building and Using Queries

Using Calculations in Queries
STEPS

open the Vector Layer
Controls window and
the Script Editor
window
select and delete the
previous query
use the Insert
procedures and / or
manual entry to create
the following query
statement:

press the Save
As icon button,
then choose Save as
Text File (*.qry) from the
dropdown menu
use the standard File
Selection window to
name a new file to
contain the query
click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

The value on the right side of a query statement can
also be provided by a database field or a calculation
involving a database field. Calculations in queries
can use standard arithmetic operations: addition (+),
subtraction (–), multiplication (*), and division (/).
You can insert the operation symbols from the Script
Reference window if you wish. The Function
listings in Script Reference window provide access
to trigonometric and other mathematical functions
that can also be used in query
statements. The sample query for this
exercise selects soil polygons for which the potential
yield for oats is exactly 5 bushels per acre greater
than the yield for wheat.

By now you have probably noticed that the last query
used for a particular object and element type is
automatically stored with the object and is opened
the next time you select the same By Query option.
If you wish to store several queries for the same
object for future use, you can use the Save and Save
As icon buttons on the Script Editor window. These
options allow you to save the query currently
displayed in the Script Editor as a file with a .QRY file
extension or as a script object in a Project File. To
reopen a stored query, use the Open icon button.

Choose RVC Object to store the query
as a script object in a Project File.

YIELD.OATS == YIELD.WHEAT + 5;

Usually a query works only
with a specific object
because of a reference to a
unique database field. If you
have a series of objects with
identical database formats,
or the query refers only to
fields in standard tables
created by TNTmips, then
you can use the same query
for any of the objects.

page 10

Building and Using Queries

Compound Queries
STEPS

open the Vector Layer
Controls window and
the Script Editor window
delete the preceding
query
use the Insert
procedures and / or
manual entry to create
the following query:

click [OK] in the Script
Editor window and in
the Vector Layer
Controls window
repeat above steps but
substitute “or” for “and”
in the query statement

Each of the queries used in the previous exercises
employs a single selection comparison to choose
polygons for display. In many cases you may need
to select elements using a combination of several
criteria. A series of selection comparisons in a query
statement must be related to each other by one or
more logical operators from set theory, such as “and”
(&&), “or” (||), or “not” (!). The keyword versions of
these operators must be entered in all lowercase

letters, or you can insert them
from the Keyword list in the

Script Reference window or insert symbolic versions
from the Operator list.

When two comparisons are linked by the logical
“and” operator, both comparisons must be true in
order to make the entire query statement true and
select the element. When two comparisons are linked
by the logical “or” operator, the query statement is
true if either of the individual comparisons is true.
Elements meeting either criterion are selected.

Polygons for which potential wheat yield is
over 34 bushels per acre and potential oat
yield is over 40 bushels per acre.

Polygons for which either potential
wheat yield is over 34 bushels per acre
or potential oat yield is over 40 bushels
per acre.

A query statement may continue onto additional lines,
though you may wish to indent subsequent lines to
make it clear that they are part of one statement.

YIELD.WHEAT > 34 and YIELD.OATS > 40;

page 11

Building and Using Queries

Using the “not equal to” Operator
STEPS

open the Vector Layer
Controls window and
the Script Editor window
choose New from the
File menu
use the Insert
procedures and / or
manual entry to create
the following query:

click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

Most of the soil types in the Crow Butte area have a
higher potential yield for oats than for wheat, but
wheat usually brings a higher price than oats when
the crop is sold. Let’s assume the crop prices per
bushel are $3.25 for oats and $4.00 for wheat. This
sample query is used to identify soil types for which
the total potential crop price per acre for oats
(potential yield in bushels per acre times price per
bushel) is greater than or equal to that for wheat.

This query is complicated
by the fact that the potential
crop yield for soil types that cannot be cultivated is
0, and such soil types would satisfy the selection
comparison in the second line of the query. The first
line of the query excludes the zero-yield soil types,
and illustrates the use of the “not equal to” operator
(<> or !=). Only the polygons for which the potential
wheat yield is not equal to 0 satisfy the first
part of the query, and only these polygons
are subjected to the price comparison in the
second line.

Polygons for which a crop of oats would
bring a higher price per acre than wheat,
assuming the potential crop yields and the
stated prices per bushel.

YIELD.WHEAT <> 0 and
YIELD.OATS * 3.25 >= YIELD.WHEAT * 4.0;

page 12

Building and Using Queries

Using Comments and Variables
STEPS

open the Vector Layer
Controls window and
the Script Editor window
choose New from the
File menu
use the Insert
procedures and / or
manual entry to create
the following query:

click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

Variable names must always start with a
lower-case letter. A variable name cannot
be the same as a query keyword or a
database table or field name.

You can enhance the readability and later usefulness
of queries by including comments. A comment
begins with the “#” symbol and may be on a line by
itself or at the end of a statement. You can use
comments within the query to explain individual
statements and an introductory comment to provide
an explanation of the intended use of the query and
what object it applies to.

The TNTmips query process
also allows you to name and
assign values to variables for
use in a query. This example
query selects soil polygons
that exceed a required potential
crop price per acre for either

oats or wheat. The first line of the query is an
assignment statement that defines a numeric variable
called “dollars” to store the required price, and gives
it a value of 129. The “=” symbol is used to assign a
value to a variable (which is why “==” must be used
for the “Equal to” operator).

Variables are useful when the same
value is used more than once in the
query. If you want to run this query
again with a different required price,
you only need to change the single value
assigned to the variable “dollars”. If
the query were written without the
variable, you would need to change two
actual numeric values in the selection
statement.

define variable for required crop
price per acre
numeric dollars = 129;

select polygons based on crop price
YIELD.OATS * 3.25 > dollars or
YIELD.WHEAT * 4.0 > dollars;

page 13

Building and Using Queries

Using String Variables
You can also define variables to contain string val-
ues. The query in this exercise defines a string vari-
able name$, which is assigned the value “Glenberg”.
(Though not required, ending a string variable name
with the $ character makes it easy to differentiate
numeric and string variable names.) The query se-
lects a subset of soil polygons belonging to the
Glenberg soil series, which includes two soil types
in the Crow Butte area. Instead of using the two
class symbols to select the poly-
gons, this query takes advantage of
the fact that the NAME field in the
DESCRIPTN table provides a soil
description that begins with the
name “Glenberg” for both classes. The query uses
the “contains” operator, which selects elements for
which a specified character string matches all or part
of a string field. In this case the character string to
be matched (“Glenberg”) is stored in the name$
variable. Polygons meeting this selection com-
parison are then screened on the basis of their
area (in square meters), which is stored in the
Area field in the standard POLYSTATS table.
(A POLYSTATS table is present only if stan-
dard attributes have been calculated for the
vector object.)

STEPS
open the Vector Layer
Controls window and
the Script Editor
window
choose New from the
File menu
use the Insert
procedures and / or
manual entry to create
the following query:

click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

The text string “Glenberg” is included in the
DESCRIPTN.NAME field for both soil
types belonging to the Glenberg series.

The “contains” operator selects polygons
for which the character string in the
name$ variable matches any part of the
DESCRIPTN.NAME string field.

string name$ = "Glenberg";
DESCRIPTN.NAME contains name$ and
(POLYSTATS.Area < 60000 or

POLYSTATS.Area > 200000);

page 14

Building and Using Queries

Using the Logical “not” Operator
STEPS

open the Vector Layer
Controls window and
the Script Editor
window
choose New from the
File menu
use the Insert
procedures and / or
manual entry to create
the following query:

click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

A number of soils in the Crow Butte area have
potential wheat yields comparable to those of the
two Glenberg soils (27 and 32 bushels per acre). The
query in this exercise selects all of the soil types
within this range of wheat yield values except the
Glenberg soils.

The first two lines of the query select any polygon
for which the potential wheat yields falls within the

designated range. The
third line of the query
begins with the logical
“not” operator (!), which

reverses the result of the variable, operator, or
expression that follows it. In this case, the expression
following the “not” operator would only select
polygons belonging to the two Glenberg soils. The
“not” operator reverses this result and selects any
polygon meeting the previous yield requirements
except the Glenberg soil polygons.

The “not” operator is especially useful when there
is a large set of values you do want to select and a
smaller, more easily-specified set of values that you
don’t want to select.

The ‘not’ operator reverses the next script
element that follows it (including variables,
operators, and comparison expressions).
If you want the ‘not’ operator to apply to an
entire expression (as in this example), the
expression must be enclosed in
parentheses.

YIELD.WHEAT >= 27 and
YIELD.WHEAT <= 32 and
!(DESCRIPTN.NAME contains "Glenberg");

page 15

Building and Using Queries

Select Using Multiple Attached Records
STEPS

open the Vector Layer
Controls window and
the Script Editor
window
choose New from the
File menu
use the Insert
procedures and / or
manual entry to create
the following query:

click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

“WB” in LAYER[*].texture;

The LAYER table for the soil class polygons in the
CBSOILS_LITE object contains information on the
different layers in a typical soil profile for each soil.
There is a separate record for each layer in the profile,
and thus multiple records attached to each soil
polygon. Selecting elements on the basis of
attributes among multiple attached records requires
a special query syntax.

In this exercise, for example, we want to select
soil types that include weathered bedrock in
any part of the soil profile. This attribute is coded
by the string “WB” in the texture field. If you try to
use the conventional selection query LAYER.texture
== “WB”, you will find that no polygons are selected,
even though some soils do have weathered bedrock
in the lower part of the profile. This query structure
only checks the first attached record in the table for
each polygon, which in this case is usually the layer
1 record, containing attributes for the topmost soil
layer. Subsequent records for the deeper soil layers
are ignored.

To query the texture field of all of the attached
records, we must use the expression
LAYER[*].texture, which returns a set that lists the
contents of the texture field from each
record attached to the current polygon.
We then need to determine if any of the
members of the set correspond to the
desired attribute “WB”. The easiest
way to do this is to use the keyword
“in” as a logical operator. The query is
true if the variable preceding the
operator is an exact match to any of the
elements in the set produced by the
expression following the operator. This
construction can be used with either
string or numeric fields.

Soil class polygons that
have weathered bedrock as
part of their typical soil
profile.

page 16

Building and Using Queries

STEPS
open the Vector Layer
Controls window and
the Script Editor
window
choose New from the
File menu
use the Insert
procedures and / or
manual entry to create
the following query:

click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window
repeat the above steps
using the following query:

Internal.Inside > 0;

A vector polygon that is wholly enclosed within a
larger polygon is called an island polygon. Because
island polygons often have different attributes than
the enclosing polygon, processes that alter the
topology or attribute assignments of a vector object
must keep track of island polygon relationships.

The Internal table for polygons includes several
fields that contain information pertaining to island
polygons. You can query these fields to select island
polygons or polygons containing islands. The
Internal.Inside field contains the element number of
the enclosing polygon, if any. All island polygons
have a non-zero value in this field. The first query
therefore selects all island polygons. The
NumIslands field shows the number of islands
contained by each polygon. The second query in
this exercise selects polygons that have a

NumIslands value greater than 0, corresponding
to all polygons that contain islands.

Island polygons selected by
the first query. Each island
belongs to a different soil
class than its enclosing
polygon.

Two polygons in the
CBSOILS_LITE vector object
include island polygons
and were therefore
selected by the second
query.

Internal.NumIslands > 0;

Find Island Polygons

page 17

Building and Using Queries

Styling by Script
STEPS

open the Vector Layer
Controls window
in the Lines tabbed
panel, turn on the Draw
Lines Before Polygons
toggle button
in the Polygons tabbed
panel, set the Style

option to By Script, and
click the adjacent Edit
button
use the Variables list in
the Script Reference
window to insert the
variables needed to
construct the following
style script:

FillInside = 1;
FillColor$ = "100 50 0";
DrawBorder = 1;
DrawColor$ = "red";

click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

The Style by Script option allows you to specify
display characteristics for subsets of the selected
elements on the basis of their attributes. To introduce
the style options, this exercise retains the previous
selection query but uses a style script to set new
display parameters for all selected polygons.
(Normally you would use the All Same style option
to accomplish this.)

When you are setting
styles by script, the Script Reference window
provides access to additional variables that are used
to set display characteristics. FillInside and
DrawBorder are numeric variables that are assigned
a value of 1 to fill selected polygons and draw a
border around them. FillColor$ and DrawColor$ are
string variables that are used to set the color for the
polygon fill and polygon border, respectively.
The value assigned to these string variables
(enclosed in double quotes) can be either a
color name (red, green, blue, black, white,
yellow, orange, brown, cyan, magenta, or gray),
or a set of RGB values (each from 0 to 100%).

You can use the
Script Reference
window to insert
predefined
variables into
scripts.

page 18

Building and Using Queries

Compound Style Scripts
STEPS

open the Vector Layer
Controls window
in the Polygons tabbed
panel, set the Select
option to All, leave the
Style option set to By
Script, and click the
adjacent Specify button
delete the previous style
script
use the Insert
procedures and / or
manual entry to create
the script shown below
click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

In this exercise all soil class polygons are selected
for display, and a style script is used to define two
different sets of polygon display parameters on the
basis of the polygon area.

When you want to specify alternative actions in a
query or style script, you must use “if-then-else” com-
mands to explicitly define the logic. The statements
in this script translate to “if a polygon has an area
greater than 200000 square meters, then fill it with
yellow, else (otherwise) fill it with a bitmap pattern
(‘BitmapPatt4’)”. (The “then” keyword is optional.)
When more than one related statement follows a
“then” or “else” command (as in this example), the
group of statements must be enclosed within begin/
end commands (or curly brackets, { }). Omitting the

begin/end commands after “else” in
this query would not produce a syn-
tax error. However, in that case only
the first statement would be applied
as the alternative to the “then” ac-
tion; the remaining statements
would be interpreted as applying
globally to all selected polygons
(like the first two lines of the script),
overriding the style parameters de-
fined earlier.

In order to use a bitmap fill pattern in a script,
the pattern assigned to the FillPatt$
variable must reside in the User Set of
defined patterns for the object. In order to
have the pattern drawn, variables
FillInside and FillBitmapPatt must
both be set to 1. See the tutorial booklet
entitled Creating and Using Styles for
information on creating fill patterns and other
styles.

Polygons with an area of 200,000 square
meters or greater are filled with the stripe
pattern defined in BitmapPatt2. Smaller
polygons are filled with yellow.

DrawBorder = 1;
DrawColor$ = "red";
if (POLYSTATS.Area < 200000)
then

begin
FillInside = 1;
FillColor$ = "yellow";

end
else

begin
FillInside = 1;
FillBitmapPatt = 1;
FillPatt$ = "BitmapPatt2";

end

page 19

Building and Using Queries

Mark by Query
STEPS

open the Vector Layer
Controls window
on the Polygons panel
set the Style menu to All
Same and press [OK]
in the Display Manager,
click on the plus sign
next to the CBSOILS_LITE

layer entry to expand it
right-click on the
polygon element entry in
the list and choose Mark
by Query from the
popup menu

in the Mark Polygons by
Query window, open
the Script tab
select the template text
[???] == [???] and delete
it
enter the Query shown
below:

In most of the previous exercises we have used
queries to determine which vector elements are to
be drawn in the view; elements not meeting the
selection criteria are not drawn at all. You can also
use similar queries in the Display process to
temporarily “mark” displayed elements in the View.
Marked elements are shown in a special color. If
more than one element is marked by the query, one
of the marked elements is designated as the “active”
element and rendered in another designated color.
In the illustration below, marked polygons are red
and the active polygon in the marked set is magenta.
(You can set marked and active element colors using
the Options / Colors menu selection on the View
window.)

You can mark elements by query in any TNT
process that shows the data in a View, including
the Editor. The distinction between active and
marked elements is important when you are editing
geometric objects (see pages 30 and 31).

press [Apply] on the
Mark by Query window
after noting the marked
polygons, press the
Unmark All icon
button in the
View window

WLHABIT.wlopen == "GOOD";

The Mark by Query window is nonmodal, which
means it provides an [OK] button that accepts
the query and closes the window and an [Apply]
button that applies the query but leaves the
window open so you can easily change the
marking criteria and re-apply the new query.

page 20

Building and Using Queries

Using the Query Builder
STEPS

switch to the Builder tab
in the Mark Polygons by
Query window

The Mark by Query window for point, line, or polygon
elements in a geometric layer provides an interactive
Query Builder interface that simplifies constructing
simple or compound queries. In this exercise we use
the Query Builder to reconstruct the simple query
used in the previous exercise.

Two sets of controls are provided for constructing
the expressions on the left and right sides of the
query statement. A menu in between allows selection
of the comparison operator to use. In both

expression control groups, a Choose Type/
Table menu lets you select a value type (number,
constant, or text) or a table name for the
expression. If you choose a table, another
menu appears to the right to allow you to
choose a field from the table. If you have

chosen a table and field for the left side expression,
the right side expression menu defaults to the Value

setting, and an adjacent menu provides a
selection of all values present in the selected
field. Text fields show the left side expression

(with yellow background) and right side expression
(cyan background), and the text field at the bottom
shows the completed query.

from the Choose Type/
Table menu at the top of
the panel, scroll down
and choose the
WLHABIT table

from the Choose Field
menu, scroll down and
choose wlopen

from the Choose menu
to the right of the Value
field in the middle of the
panel, choose GOOD
note the full query
statement shown at the
bottom of the panel
press [Apply] on the
Mark by Query window

Controls for left side of query statement

Controls for right side
of query statement

Comparison operator menu

Constructed query
deletes high-
lighted text

deletes entire
query

menu of
available
values for
selected
field

Expression for left side

Expression for right side

page 21

Building and Using Queries

Compound Queries with the Builder

STEPS
press the AND button on
the Builder panel
in the Choose Type/
Table menu for the left
expression, choose the
WLHABIT table
in the Choose Field
menu, choose wlwood
from the Choose menu
for the Value of the
right-side expression,
choose GOOD
note the full compound
query shown at the
bottom of the panel
press [Apply] on the
Mark by Query window

You probably noticed that the controls on the
Builder panel change to reflect your selections
on other controls. These changes are designed to
offer appropriate choices and to guide you through
construction of your query.

Once you have a complete simple query statement,
you can go on to construct a compound query by
pressing the AND or OR button above the query
statement text field. This action clears the builder
menus and text fields above for the left and right
expressions, but retains the previous query
statement in the query text field and adds the
appropriate compound query keyword. You can then
use the expression controls to construct the second
statement for the compound query.

The queries on this and the previous
page use fields in the wildlife habitat
(WLHABIT) table that list the suitability
of different soil types for supporting
different types of vegetation communities
and associated wildlife habitat. The query
on this page marks soil polygons that
could support good quality open and
woodland habitat.

after noting the marked
polygons, press the
Unmark All icon
button in the
View window

page 22

Building and Using Queries

STEPS
press the Clear button
on the Builder panel
for the left side
expression, choose the
YIELD table and the
WHEAT field
press the Multiply
icon button in the
left side
expression controls
return to the Choose
Type/Table menu for this
expression (which still
shows YIELD) and
choose Number:
enter 4 in the field that
appears to the right of
the menu
choose is greater than
from the comparison
operator menu
for the right side
expression, choose the
YIELD table and the
OATS field
press the Multiply
icon button in the
right side
expression controls
return to the Choose
Type/Table menu for this
expression (which still
shows YIELD) and
choose Number:
enter 3.5 in the field that
appears to the right of
the menu
press [OK] on the Mark
by Query window
after noting the
marked polygons,
press the Unmark
All icon button in the
View window

Query Calculations with the Builder
The Query Builder can also be used to construct
queries that incorporate numerical calculations.
When you select a numeric database field for one of
the expressions, a set of icon buttons become active
that allow you to insert a arithmetic operator into the
expression. To insert a numeric value after the
operator, use the same menu you used to select the
table, but this time select the value type Number,
which then allows you to enter the desired numeric
value. You can also use the Function menu to insert
numerical functions such as round, square, and
absolute value.

A query constructed using the Builder is also shown
on the Script tabbed panel, where you can perform
further edits if necessary to construct more complex
queries.

page 23

Building and Using Queries

Census Boundaries in TIGER Data
Vector objects imported from the US Census
Bureau’s TIGER / Line files are made up of line seg-
ments representing natural and manmade physical
features as well as political boundaries. The bound-
aries of census tracts (and equivalent Block
Numbering Areas, or BNA’s) and their component
census blocks usually coincide with other map fea-
tures and are not explicitly identified by a Census
Feature Class Code (CFCC) like the basic map fea-
tures.

Census block boundary lines can be selected for
display or extraction using a query that selects lines
for which the block numbers on the left and right
side are not the same. Blocks that have been subdi-
vided retain the same block number, but are identified
by different letters in left and right block suffix fields;
the second set of statements in the sample query
selects these boundaries. Finally, blocks in adja-
cent BNA’s can have the same number, so the final
statement selects lines separating different BNA’s.
If any of these three conditions is met, the line is
selected.

STEPS
choose Display / New /
2D Display from the
Display Manager
select the ALAMEDA object
from the TIGER Project
File
open the Vector Layer
Controls window for the
Alameda vector, set the
Select option in the
Lines panel to By Query,
and press [Specify...]
use the Insert
procedures and / or
manual entry to create
the query shown below
click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window
when you are finished
with this exercise,
minimize the view for
Display Group 2

Raw TIGER / Line data
for a portion of Alameda
County, California.

The same area with
census block
boundaries selected
by query.

Basic_Data.Block_Left <> Basic_Data.Block_Right
or (Basic_Data.Block_Left == Basic_Data.Block_Right
 and Basic_Data.BlockSuff_Left <>

Basic_Data.BlockSuff_Right)
or Basic_Data.BNANum_Left <> Basic_Data.BNANum_Right;

page 24

Building and Using Queries

Polygon Adjacency Query: Logic

Vector object CBSOILS_LITE

with all polygons of classes
SrD and Sa selected (for
comparison with illustration
on the next page).

Class Sa Class SrD

A selection query can also make use of the
topological information associated with a vector
object. Each line in a vector object has a beginning
node and an ending node, which define a left and
right side for the line. Each polygon is made up of
specific line elements, and the Internal table for lines
includes fields that contain the element numbers of
the polygons that lie on either side of the line. The
GetVectorPolyAdjacentPolyList() function (in the
Vector Function list in the Script Reference window)
uses this information to determine which polygons
are adjacent to the current polygon. This function
can be used in a query to select polygons that are
adjacent to specific polygon classes.

As an example, let’s examine a query for the
CBSOILS_LITE vector object that selects polygons
belonging to soil class “SrD” that are also adjacent
to polygons of class “Sa.” To be considered adjacent,
the polygons must share a common line boundary,
not just a common node. The general strategy used
in such a query is as follows:

1) Define the class to select.

2) If a polygon belongs to the selected class, then do
the subsequent steps (test for adjacency), otherwise

reject it.

3) Get the list of polygons that are
adjacent to the current polygon.

4) Check the class assignment for each
adjacent polygon. If any of them match
the defined adjacent class, select the
current polygon for display. If none
match, reject it.

The syntax for this query is shown and
explained on the next page.

STEPS
open the Vector Layer
Controls window for the
CBSOILS_LITE layer
in the Polygons tabbed
panel, set the Style
option to ClassStyle
set the Select option to
By Query, and click the
adjacent Specify button
delete the previous
query in the Script Editor
window
use the Insert
procedures and / or
manual entry to enter
the query shown on the
next page
click [OK] in the Script
Editor window
click [OK] in the Vector
Layer Controls window

page 25

Building and Using Queries

1
2
3
4
5
6
7
8
9

10
11
12

Polygon Adjacency Query: Syntax
if (CLASS.Class == "SrD") then
begin
array numeric polylist [10]; numeric numpolys; numeric i;
numpolys = GetVectorPolyAdjacentPolyList(Vect, polylist);
for i = 1 to numpolys begin
numeric polynum = polylist[i];
if (Vect.poly[polynum].CLASS.Class$ == "Sa")then
return 1;

end
return 0;

end
else return 0;

3. Defines a one-dimensional array called “polylist” to hold a list of the element numbers
of polygons that are adjacent to the current polygon. Initializes the array size at 10
elements (it is resized automatically by the function in the next statement). Also
declares a variable to store the number of polygons adjacent to the current polygon
and a numeric counter variable for the processing loop.

4. Calls the GetVectorPolyAdjacentPolyList() function, which finds the element numbers
of the adjacent polygons and stores them in the “polylist” array. It also returns the
number of adjacent polygons, so the function value is assigned to “numpolys”. The
predefined variable “Vect” is used to indicate the current vector object.

5. Begins a processing loop to examine the class of each polygon in the array. The
loop is run once for each element in the array, beginning with the first position (array
index 1) and continuing to the last position (specified by the current value of variable
“numpolys”). In each loop the variable “i” is assigned the value of the current array
index for use in the next statement.

6. Assigns the number of the current adjacent polygon (specified by its index in the
array) to the numeric variable “polynum”.

7. Looks up the class of the current adjacent polygon and compares it to the specified
adjacent class. The database specification is in the form
“Object.database[record#].table.field”. (The ”$” at the end of the database
specification indicates that the target
field is a string field.) If the classes
match, then...

8. The “return 1” statement explicitly states
that the query is true for a polygon
satisfying the above condition, so the
polygon will be selected for display.

9. End of array processing loop.
10. If all adjacent polygons fail the class

test above, the “return 0” statement
states that the query is false.

11. End of polygon adjacency loop.
12. States that the query is false for a

polygon not meeting the initial class
selection condition in statement 1.

Polygons of class SrD that are
adjacent to those of class Sa.

1. Conditional selection of class SrD polygons
for subsequent testing.

2. Begins the processing loop to check the
class of adjacent polygons.

page 26

Building and Using Queries

Selection Query for Dynamic Labels
STEPS

open the Vector Layer
Controls window for the
CBSOILS_LITE layer
in the Dynamic Labels
section of the Polygons
tabbed panel, set the
Text option to By Script
and press the adjacent
Specify button
enter the query shown
below

set the Position option to
Always Inside
press [Text Style]
press [Font] in the Style
Editor window and
choose mallard.of
set the Ascender Height
value to 3.00 millimeters
At Scale = None
click [OK] on the Style
Editor window and on
the Vector Layer
Controls window

if (POLYSTATS.Area > 50000 and
POLYSTATS.CompactRatio < 1.5)
print(CLASS.Class);

The Display process includes a feature to draw labels
dynamically in the view for elements in a geometric
object. The text for each element can be read
automatically from a field in a related database table
that you designate. However, you also have the
option to use a query to generate the text. The query
might rework the text from one or more database
fields, or limit the labels to a specific set of elements.

In this exercise we use a query for dynamic polygon
labels that uses two criteria to limit the
label set: only larger polygons that are
not too long and narrow are labeled.
These selection criteria are based on

the Area field and the CompactRatio field in the
POLYSTATS table (see note below left).

The query for a dynamic label in a display has a
special syntax. The text for the label must be
specified using the SML print() function as shown.

The CompactRatio
(compactness ratio) field
records the ratio of the
boundary length of the polygon
to the perimeter of a circle with
equivalent area. The minimum
value of 1.0 would indicate a
circular polygon. The higher
the compactness ratio, the
more the polygon differs from
a circular shape. Only larger and more compact polygons are labeled.

NOTE: The TNT Editor includes an Auto Generate Label operation for vector
objects to create permanent label elements using attributes for points,
lines, or polygons. The label text can be set from a single field (By Attribute)
or using a query (By Script). The label text created by such a query must be
assigned to a predefined string variable, Label$, in order to be returned as
the label: Label$ = sprintf("%d", CLASS.ClassArea);

page 27

Building and Using Queries

Computed Fields from Multiple Records
Scripts can also be used to define the values for
virtual fields in database tables. In many cases these
scripts need only create simple arithmetic
combinations of other fields in the same record. The
task in this exercise is more complex: to create a
computed numeric field in the polygon Class table
for CBSOILS_LITE that shows the total area for each
soil type.

Polygon areas are stored in the POLYSTATS table
for individual polygons, but we are creating the
computed field in the Class table, which has one
record for each soil type. The script shown here is
designed to sum the polygon areas for each soil class
and return that sum as the computed field value.

The script defines a numeric variable “sum” that is
used to sum the areas in the POLYSTATS.Area field.
This variable must be initially reset to a value of 0.0
for each class. The variable “num” is assigned a
value (for the current soil class) equal to the number
of attached records in the POLYSTATS table. This
variable is used to set the number of iterations of the
loop that sums the areas.

STEPS
right-click on the
polygon element entry
for the vector in the
Display manager and
choose Edit Relations
in the Database Editor
window, right-click on
the Class table box and
select Properties from
the dropdown menu
in the Table Properties
window, click the
Add Field icon
button
on the Field panel,
highlight the default
name in the Name field
and type ClassArea
on the Field panel,
select Computed from
the Field Type menu and
click [Edit Expression]
enter the script shown
below in the Query
window

Class table with added
computed field showing
the summed area for
each soil type.

numeric sum = 0.0; numeric i, num;
num = SetNum(POLYSTATS[*]);
for i = 1 to num begin

sum = sum + POLYSTATS[i].Area;
end

return sum; click [OK] in the Query
window
enter 12 in the Width
text box and 2 in the
Places text box
click [OK] in the Table
Properties window
double-click on the box
for the Class table to
open it
choose Table / Close to
close the Class table
choose File / Close to
close the Database
Editor table

page 28

Building and Using Queries

String Expression Fields
STEPS

choose Tools /
Database / Edit from the
TNTmips menu
navigate to and select
the CBSECT object in the
CB_SECT Project File
turn on the Polygons
radio button in the
Element Type window
in the Database Editor
window, right-click on
the Sections table box
and select Properties
in the Table Properties
window, click on the
Range field in the list
and click the Add
Field icon button
on the Field
panel, highlight the
default name for the
new field and type
SecTwpRng
select String Expression
from the Field Type
menu and click Edit
Expression
enter the script shown
above in the Query
window

click [OK] in the Query
window
enter 25 in the Width text
box
click [OK] in the Table
Properties window
double-click on the
Sections table box to
open it
choose Table / Close to
close the Sections table

sprintf(“Sec %s Twp %s Rng %s”, Sections.Section,
Sections.Township, Sections.Range);

A string expression field is a special type of virtual
field in a database table. The simplest use of a string
expression field is to link the contents of a string
field in another related table into the current table.
The expression in that case is simply the appropriate
TABLE.FIELD reference. You can also use string
expressions to merge the contents of several string
fields (from one or several tables) into one new field.
For example a table called NAME could have separate
fields for first and last names. You can use the “+”
(add) operator to merge these strings. The
expression NAME.FIRST + “ ” + NAME.LAST
would produce entries with the form “John Doe”.
The expression must include any separating
characters (spaces, commas) in quotes, as shown.
You can use a merged string expression field to
provide text for more informative Data Tips or labels.

The expression you use in this exercise employs the
sprintf() function, which allows you to format
complex string expressions more easily. The first
function argument is a control string (in quotes),
which is followed by the string field references. Each
of the “%s” entries in the control string stands for
one of the listed string field references. The control
string can also incorporate inserted text, spaces, or

punctuation.

Formatted
text created
by the string
expression.

page 29

Building and Using Queries

STEPS
choose File / Open
Database on the
Database Editor window
navigate to and select
the PIPELINES object in the
PIPES Project File
turn on the Lines radio
button in the Element
Type window
in the Database Editor
window, right-click on
the PipeLineData table
box and select Open
from the dropdown menu
in the PipeLineData
tabular view, right-click
on the StartNode field
and choose Field Options
from the popup menu
in the Field Options
window, press [Edit
Expression]
in the Script Editor
window, press
the Insert Field
icon button
in the Insert Field
window, choose Start
Node from the Element
menu
select Internal from the
Table menu, then
ElemNum from the Field
menu
press [Close] on the
Insert Field window, [OK]
on the Script Editor
window, and [Cancel] on
the Field Options
window
when you have
completed this exercise,
close the PipeLineData
tabular view, then
choose File / Close from
all Database Editor
windows

Cross-element
expression created using
the Insert Field window’s
Element menu

Creating Cross-Element Expressions
Virtual fields in the element databases of a vector
object can access and use attributes of other types
of elements in the same vector object. For example,
virtual fields for line elements can reference attributes
of the each line’s start and end node or the polygon
to the left and right of each line. The PipeLineData
table shown in this exercise includes virtual fields
that show the Start Node and End Node of each line
element and others that show the elevation of each
of these nodes.

The expressions used to create these cross-element
virtual fields require a specific structure and syntax.
You can easily create the required expression using
the Insert Field window. Use the Element menu on
this window to select the related element from which
you want to acquire the attributes, then select the
table and field to automatically construct the
expression, which can then be inserted into the Script
Editor window.

page 30

Building and Using Queries

Queries to Check Digitizing Artifacts
Marking queries can also be useful when you are
creating or editing a vector object using the
TNTmips spatial data Editor. Complex vector
objects can contain digitizing errors such as line
overshoots, unclosed polygons, and sliver

polygons. Many of these flaws are not visible except
at high zoom levels, which makes manual checking
difficult and time-consuming. You can speed up the
search for potential topology problems by using
queries such as the examples below. The right mouse
button menu for each element type in an editable
layer has a Mark by Query option that allows you to
create and apply a selection query for a particular
element type.

UNCLOSED POLYGONS
In a vector object containing a network of polygons, a gap
between two lines that should intersect may leave a single
polygon where two separate polygons should exist. Lines
that fail to close a polygon can be found by query because
they have the same polygon on both sides:

Internal.LeftPoly == Internal.RightPoly

OVERSHOOTS
Overshoots are short line segments that incorrectly
extend beyond a line intersection. If you have run the
Standard Attributes process for the vector object, you
can use a selection query based on line length to select
all very short lines for examination and possible
removal:

LINESTATS.Length < [your length value]

SLIVER POLYGONS
Double-tracing polygon boundaries can create
extraneous sliver polygons along the boundary of two
contiguous polygons. Sliver polygons usually have a
much smaller area than the main polygons, and are
usually highly elongate (with a high Compactness Ratio).
Use a combined query on the Area and CompactRatio
fields in the POLYSTATS table to select sliver polygons:

POLYSTATS.Area < [your area value] or
POLYSTATS.CompactRatio > 3.00

Right-click in the Editor
Layer Mangager on the
entry for the element type
you want to edit. Choose
Mark by Query to open the
standard Query Editor so
you can enter a selection
query to mark (highlight)
elements as candidates for
editing.

page 31

Building and Using Queries

Pan by Query
A marking query executed in the spatial data Editor
or in Display often marks more than one element.
One of these marked elements is designated the
“active” element; the active and marked elements
are drawn in different colors in the View. Editing
operations can be applied to either the active or the
marked elements. You can use the Previous Marked
and Next Marked icon buttons on the View window
to step forward and backward through the set of
marked elements, making each one active in turn.
The view is automatically repositioned (if necessary)
to display the current active element. This “pan by
query” feature allows you to remain zoomed in to
examine (and perhaps edit) each element while easily
stepping through the selected set.

STEPS
restore the View for
Display Group 2
open the Vector Layer
Controls window
set the Select option in
the Lines panel to All
and click [OK]
zoom in several times
until the scale shown in
the view’s status bar is
approximately 1:3000 or
1:2500

The exercises in this booklet have introduced the fundamentals of the structure
and syntax of database queries for use in TNTmips, TNTedit, and TNTview. The
query language is a subset of the Geospatial Scripting Language (SML) used in
TNTmips, and shares the same syntax. In addition to the documentation on
queries cited on page 2, you may wish to consult the tutorial booklet Writing
Scripts with SML and Using CartoScripts to expand your scripting capabilities.

Marked
elements

Active
element

Use the Previous Marked
and Next Marked icon
buttons to pan forward or
backward through the set
of selected elements.

LINESTATS.Length < 50

click [Apply] on the Mark
by Query window
click the Next
Selected icon
button on the View
window

click the arrow
icon button for
lines to enable selection
right-click on the lines
entry and choose Mark
by Query from the
dropdown menu
enter the following
query in the Mark by
Query window:

click the icon for the
Alameda layer entry to
expand it

page 32

Building and Using QueriesAdvanced Software for Geospatial Analysis

www.microimages.com

Q
U
E
R
I
E
S

MicroImages, Inc.

MicroImages, Inc. publishes a complete line of professional software for advanced geospatial data
visualization, analysis, and publishing. Contact us or visit our web site for detailed product
information.

TNTmips Pro TNTmips Pro is a professional system for fully integrated GIS, image
analysis, CAD, TIN, desktop cartography, and geospatial database management.

TNTmips Basic TNTmips Basic is a low-cost version of TNTmips for small projects.

TNTmips Free TNTmips Free is a free version of TNTmips for students and professionals
with small projects. You can download TNTmips Free from MicroImages’ web site.

TNTedit TNTedit provides interactive tools to create, georeference, and edit vector, image,
CAD, TIN, and relational database project materials in a wide variety of formats.

TNTview TNTview has the same powerful display features as TNTmips and is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD or
DVD at low cost. TNTatlas CDs/DVDs can be used on any popular computing platform.

Index
adjacent polygons..........................20,21
arithmetic operations...............................9
auto generate labels..........................26
assignment statement.............................12
comments..12
comparison operators...............................4

equal to, ==......................................5
greater than, >.................................4
not equal to, <>................................11
contains..13

compound queries..............10,18,19,21,23
computed fields.................................27,29
cross-element expression........................29
database query, defined..............................3
dynamic labels...............................26
editing

overshoots....................................30
sliver polygons...............................30
undershoots.................................30

Insert Field window............................6
InsertOperator window............................5
island polygons............................15
logical operators (and, or, not)........10,14
mark by query............................19,31
multiple attached records.................15
opening a query.......................................9
pan by query...27
query builder20-22
saving a query..9
select by query........................4-16
string field...7
string expression field..........................28
string variables......................................13
style by script...............................3,17,18
syntax, checking....................................8
Table[*] expression.........................15,27
topological query............................24,25
variables...12,13
virtual fields....................................27-29

	Before Getting Started
	Welcome to Building and Using Queries
	Selecy by Querying a Single Field
	Using the Insert Operator Option
	Using the Insert Field Option
	Querying a String Field
	Checking Query Syntax
	Using Calculations in Queries
	Compound Queries
	Using the "not equal to" Operator
	Using Comments and Variables
	Using String Variables
	Using the Logical "not" Operator
	Select Using Multiple Attached Records
	Find Island Polygons
	Styling by Script
	Compound Style Scripts

	Mark by Query
	Using the Query Builder
	Compound Queries with the Builder
	Query Calculations with the Builder

	Queries on Topology
	Census Boundaries in TIGER Data
	Polygon Adjacency Query: Logic
	Polygon Adjacency Query: Syntax

	Selection Query for Dynamic Labels
	Virtual Fields
	Computed Fields from Multiple Records
	String Expression Fields
	Creating Cross-Element Expressions

	Queries to Check Digitizing Artifacts
	Pan by Query
	Index and MicroImages Product Information

