
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • July 2009

Compute Map Unit Areas for Catchments
Sample Script

Tg

Tg

Tv

Tg
Cu

pCgs

Mu

Du

Tv

Tv (volcanic): 67.9
Tertiary

Tg (granite): 6.1

Paleozoic
(sedimentary)

Mu: 9.0
Du: 3.8
Cu: 11.2

pCgs(gneiss): 1.9
Precambrian

99.9%

In this illustration
the MapUnitAreas
script was used to
tabulate areas for
all geologic map units. The resulting percentage values
are shown for a sample and catchment polygon that have
no upstream contributing catchments, so the tabulation
shown covers only this polygon. Zero values for map
units not included within this catchment are omitted in
the list above.

In this illustration the
MapUnitAreas script was
used to tabulate areas for a
single geologic map unit, Tg
(Tertiary granite, shown in
red in the map to the right).
The black polygons outline
catchments for individual
stream sediment samples (dark green dots). All of the
catchments shown lie within a single stream drainage.
The sample point in the upper left is farthest downstream,
so its total catchment area is the sum of all of the catch-
ment polygons shown. The Tg unit area and area percent-
age for this sample (shown in the Single Record View
above left) are therefore computed using all of the contrib-
uting catchment polygons. Tertiary granite underlies 52.3%
of the total catchment area of this sample.

Sampling and geochemical analysis of stream sediment is
an important tool used in exploration for mineral resources.
The sediment in a single sample is sourced from the up-
stream catchment area, so any prospective geochemical
anomalies must relate to that area. If multiple samples lie
within the same drainage, all of the smaller upstream
catchments contribute to the sediment sampled at the more
downstream locations. MicroImages provides a custom
geospatial processing script (SampleCatchments) that uses
watershed functions to delineate the upstream catchment
area for each point in a large sample set (see the Technical Guide entitled Sample Script: Mapping Catchment Areas for
Sample Points). The script generates a local upstream catchment polygon for each sample and records the number and
identities of any additional upstream contributing catchments.

Identifying geochemical anomalies in these sediment
samples requires knowledge of the rock units and soils
within the contributing areas. In particular, the areal
extents of different rock and soil units can affect the
background values of the chemical elements measured
and influence the identification of anomalies. To aid in
this analysis, MicroImages has created another cus-
tom geospatial processing script that tabulates the ar-
eas of map units that occur in each catchment polygon
and any upstream catchments.

The inputs to this MapUnitAreas script (excerpted on
the reverse) are topological vector objects: the sample
point and catchment polygon objects created by the
Sample Catchments script and an overlapping vector
geologic, soil, or other map. You can choose to com-
pute area information for all map units or restrict the

computation to a single target map unit. The script performs
a logical intersection (vector AND) of the catchment poly-
gons and map unit polygons, which subdivides each catch-
ment polygon into its constituent map unit polygons. Map
unit areas (in square kilometers) and area percentages are
then computed recursively (summed over all contributing
catchments) for each sample point and stored in a database
table. This map unit area table is written to a copy of the
input sample point vector object and its records are attached
to the corresponding points. The table is also written to a
copy of the input catchment polygon vector object and its
records attached to the corresponding polygons.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • July 2009

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

Script Excerpts for GeolMapUnits.sml

func class STRINGLIST getMapUnitList (class DBTABLEINFO dbInfo, class
STRING fieldName$)

{
for i = 1 to dbInfo.NumRecords

{

if (mapUnitIdFieldTypeStr == "string")
{
unit$ = TableReadFieldStr(dbInfo, fieldName$, i);
}

else
unit$ = NumToStr(TableReadFieldNum(dbInfo, fieldName$, i));

if (unit$ <> "")
{

if (list.GetNumItems() == 0) then
list.AddToEnd(unit$);

else
{
unitInList = 0;
for j = 1 to list.GetNumItems()

{
if (list[j - 1] == unit$) then unitInList = 1;
}

if (unitInList == 0) then
list.AddToEnd(unit$);

}
}

}
list.Sort();

return list;
}

read map unit identifier field in record

function to return stringlist with single
entry for each map unit identifier

if string is not empty

if stringlist is empty, add the unit identifier to the list

otherwise loop through the stringlist to
see if unit identifier is already in list

sort list alphabetically

proc getUpstreamIDs (class STRING IDstr, class STRING sampFld$, class
DBTABLEINFO sampTbl, class DBTABLEINFO ptpTbl)
{

catchmentIDlist.AddToEnd(IDstr);

local numeric recNum = TableKeyFieldLookup(sampTbl, sampFld$, IDstr);

local array numeric ptNums[1];
TableGetRecordElementList(sampTbl, recNum, ptNums, "point");

local array numeric recNums[1];
TableReadAttachment(ptpTbl, ptNums[1], recNums, "point");

local numeric numAdjUp = TableReadFieldNum(ptpTbl, "NumUpSamples",
recNums[1]);

procedure to return stringlist with IDs for current
catchment and its upstream catchments

add current sample ID to global ID List

get record number in the point sample table for the current
sample ID; this table is directly attached to the point elements

get the element number of the sample point this
record is attached to (function returns an array)

get the record in the PointToPoint
table that is attached to this point

get number of upstream samples immediately adjacent
to the current basin from PointToPoint table

if there are adjacent upstream polygonsif (numAdjUp > 0)
{

for j = 1 to numAdjUp
{

local string field$ = fieldbase$ + NumToStr(j);
local class STRING tempIDstr;

if (sampIdFieldTypeStr == "string") then
tempIDstr = TableReadFieldStr(ptpTbl, field$, recNums[1]);

else
tempIDstr = NumToStr(TableReadFieldNum(ptpTbl, field$,

recNums[1]));

tempList.AddToEnd(tempIDstr);
}

for j =1 to numAdjUp
{
getUpstreamIDs(tempList[j-1], sampFld$, sampTbl, ptpTbl);
}

}
}

get list of sample IDs for adjacent upstream samples
from UpSample[num] fields in the PolyToPoly table

create string for field name holding the appropriate
UpSample basin ID and add to local stringlist

read ID from the current upstream field

add ID as string to
temporary stringlist

loop through temporary list of UpSample fields to get
their adjacent upstream basin IDs and call this function
recursively to check for basins further upstream

