
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • March 2007

Using Graphics in Complex DataTips
Sample Geospatial Script

AspectTip1.sml: Display Control
Script creates DataTip with
aspect graphic only; no DataTip
background or border.

AspectTip2.sml: Display Control
Script creates DataTip with
aspect graphic and default
background color and border.

AspectTip3.sml: Display layout with complex DataTip incorporating a graphic
created by this Display Control Script. The graphic is created from the cell value
read from the ASPECT raster object. The script adds this graphic to the DataTip
information drawn from the SLOPE, DEM, and FlowPaths2 layers.

Display control scripts allow you to add custom text and
rich, context-sensitive graphical information to DataTips
in groups, layouts, and atlases. A control script can read
values from the raster cells and geometric elements at
the cursor location, perform calculations if needed, and
create charts, graphs, or other special-
ized graphics for presentation in the
DataTip. You can configure the script
to use the graphic alone (with transpar-
ent background) or embed the graphic
in the default rectangular DataTip with
background color and border. The
script can also either allow or suppress
the DataTip information that has been
set outside the script for the various lay-
ers in the view.
The illustrations on this page show
these DataTip context options for a
sample control script graphic. Each of
the three sample control scripts reads
the cell value under the mouse cursor
from an ASPECT raster layer, creates
a graphic with a pointer showing this
aspect direction, and creates formatted
text to report the numerical value.
AspectTip1.sml shows only the aspect
graphic with no DataTip background.

AspectTip2.sml embeds the graphic in the normal col-
ored DataTip background and border, but shows no
information from other layers in the layout.
AspectTip3.sml embeds the graphic in the normal
DataTip background but also allows attribute informa-

tion from other layers in the layout to appear
(as designated by the settings on the DataTip
panel of the Layer Controls window for each
layer; see the Technical Guide entitled Spatial
Display: Designing Complex DataTips).
The bulk of the code for these three scripts is
identical; only a few lines of code differ to pro-
duce these variations in DataTip context. The
relevant excerpts of AspectTip1.sml are shown
on the reverse side of this page, with the sa-
lient code section highlighted; the matching
salient sections of the other two scripts are also
shown for comparison, along with illustrations
of the resulting DataTips.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • March 2007

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

class RVC_RASTER ASPECT;
class GRE_LAYER aspectLayer;

class GRDEVICE_MEM_RGBA dev;

class COLOR transparent(0, 0, 0, 0);

numeric height, width;

Excerpts and Variations for AspectTip Scripts

the aspect raster object

the layer containing the aspect raster
RGB Alpha (opacity) graphics
rendering device in memory
for drawing in DataTip
transparent color to clear device

height and width of graphics rendering device

proc OnInitialize () {
width = 110;
height = width * 1.45;
dev.Create(height, width);
}

set width of rendering device in pixels
set height of rendering device in pixels

create graphics rendering device

func OnViewDataTipShowRequest (
 class GRE_VIEW view,
 class POINT2D point,
 class TOOLTIP datatip
) {

 trans = view.GetTransLayerToScreen(aspectLayer, 1);
point = trans.ConvertPoint2DFwd(point);
lin = floor(point.y); col = floor(point.x);

aspect = ASPECT[lin, col];

if (aspect <> ASPECT.$Info.NullValue)
{
dev.Clear(transparent);

gc = dev.CreateGC();

center.x = width * 0.5; center.y = center.x;
radius = width * 0.45; boxtop = center.x * 2;
gc.SetColorRGB(240, 255, 240);
gc.FillCircle(center.x, center.y, radius);
gc.FillRect(15, boxtop, width-30, 35);

gc.SetColorName("black");
gc.DrawCircle(center.x, center.y, radius);
gc.DrawRect(15, boxtop, width-30, 35);

gc.DrawTextSetFont("ARIALBD.TTF");
gc.DrawTextSetHeightPixels(12);
color.Name = "black";
gc.DrawTextSetColors(color);’

start = center.x - (gc.TextGetWidth("Aspect:") * 0.5);
gc.DrawTextSimple("Aspect", start, boxtop + 15);

gc.DrawTextSetFont("ARIAL.TTF");

get transform from screen to layer coordinates and
convert cursor position to layer coordinates

line and column position
of cell under cursor

get cell value from ASPECT raster

if cursor is not over a null cell

clear the graphics rendering device

Draw static GraphTip elements
create graphics context

draw background circle for aspect
indicator and rectangle for aspect text

draw black circle outline and black rectangle outline

circle outline
rectangle outline

set parameters for drawing Aspect text label in rectangle

draw centered Aspect label in rectangle

set aspect text and pointer parameters

font for aspect value string

else {
aspect$ = sprintf("%.1f deg", aspect);

start = center.x - (gc.TextGetWidth(aspect$) * 0.5);
gc.DrawTextSimple(aspect$, start, boxtop + 30);

aspectDrawAngle = (aspect - 90);
arrowLength = 40;
gc.SetLineWidth(3);

arrowEnd.x = center.x + arrowLength * cosd(aspectDrawAngle);
arrowEnd.y = center.y + arrowLength * sind(aspectDrawAngle);

gc.MoveTo(center.x - arrowLength *
cosd(aspectDrawAngle), center.y - arrowLength *
sind(aspectDrawAngle));

gc.SetColorName("red");
gc.DrawTo(arrowEnd.x, arrowEnd.y);

gc.DrawArrow(arrowEnd.x, arrowEnd.y, aspectDrawAngle, 9, 30, "Open");
gc.SetColorName("black");
gc.FillCircle(center.x, center.y, 3);

datatip.SetImageTip(dev);

return -1;

}
}

else return -1;

}

draw aspect value and pointer
create and draw
aspect label string

drawing angle for aspect pointer

 set line width to 3 pixels for pointer

find and store coordinates of end of pointer line

move to start of pointer line and draw to end

draw arrowhead and small black circle at center of rotation of pointer

if outside ASPECT raster or on
null cell, don't show any DataTip

end if not over null cell

datatip.AppendImage(dev);
datatip.AppendText("\n");

return 1;

datatip.AppendImage(dev);

datatip.AppendText("{~FARIAL.TTF}\n");

return 0;

 Global Variables

procedure called when group or layout is initialized

if (aspect == -1) {
aspect$ = "Undefined";
start = center.x - (gc.TextGetWidth(aspect$) * 0.5);
gc.DrawTextSimple(aspect$, start, boxtop + 30);
}

flat area with aspect undefined; only write string

function called when
DataTip request is made

end OnViewDataTipShowRequest

set graphics device as
an image in the DataTip

use only the image, suppress
the DataTip frame

append the graphics
device to the DataTip

render image in normal DataTip frame,
suppress entries from other layers

append the graphics
device to the DataTip

render image in normal DataTip frame,
allow entries from other layers

set font for following entries

AspectTip1.sml

Substituted in AspectTip2.sml

Substituted in AspectTip3.sml

Red-boxed code sections below in AspectTip1, AspectTip2, and AspectTip3 determine the DataTip form.

