
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • October 2007

Launch Programs with TNTmips Data
Sample Geospatial Scripts

The Snapshot macro
script takes a snapshot
of the View contents,
exports it to the desired
raster file format (such
as JPEG, TIFF, PNG,
and BMP) and then
opens the file in the
program associated with
that file type. In this
example run under Mac
OS X, the output TIFF
file opens in Preview.

In the illustrations to the right, the Soil_Info tool script compiles
cumulative area and soil attributes from a user-defined portion
of a vector soil map, writes the information to a CSV (Comma-
Separated Values) file, and opens that file in the program
associated with that file type (in this case, Microsoft Excel).

The Area Statistics tool script (described in the
Technical Guide entitled Sample SML Tool Script: Area Statistics) com-
putes raster statistics for a user-defined area and allows the statistics to
be saved as a text file. For the illustration above, this script was modified
so that its save procedure (excerpted on the reverse) automatically opens
that text file in the associated software program (in this case, Notepad).

Interactive geospatial scripts such as Tool Scripts and Macro
Scripts can process the spatial objects in a View window to
derive information and/or new spatial objects that can be
saved or exported to various external file formats. Once such

a file has been created, the script can also automatically open
the file in the software program with which you have regis-
tered that file type on your computer. A simple function
called RunAssociatedApplication() is used for this purpose.

Three sample scripts that use this function are illustrated
below and excerpted on the reverse side of this page,
with the portions using this function highlighted in color.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • October 2007

muname$ = "\"" +xSoilVec.Poly[polynum].mapunit.muname$ + "\"";
mukind$ = xSoilVec.Poly[polynum].mapunit.mukind$;

fprintf(outfile, "%s,%.2f,%s,%s\n", musym$, polyarea, muname$, mukind$);
}

View.SetMessage("Done.");
fclose(outfile);
RunAssociatedApplication(outfileName$);
CloseVector(xSoilVec);
}

}

soilAreaHash[key$] = soilAreaHash[key$] + polyarea;
}

else {
soilAreaHash[key$] = polyarea;
polyNumHash[key$] = i;
}

}

for i = 0 to keylist.GetNumItems() - 1 {
musym$ = keylist.GetString(i);
polyarea = soilAreaHash[musym$];
polyarea = polyarea * areaScale;

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

proc OnRightButtonPress () {
if (checkLayer()) {

soilVec.GetDefaultGeoref(vGeoref);

toolRegion = RegionTrans(tool.RegionData, View.GetTransViewToScreen(1));
toolRegion = RegionTrans(toolRegion,

View.GetTransMapToView(vGeoref.GetCoordRefSys(), 1));

CreateTempVector(regionVec);
regionVec = ConvertRegionToVect(toolRegion);

View.SetMessage("Extracting area...");
CreateTempVector(xSoilVec);
xSoilVec = VectorExtract(regionVec, soilVec,

"InsideClip", "AddBorder,RemExRecords");
CloseVector(regionVec);
View.SetMessage("Making CSV file...");

outfileName$ = GetOutputFileName(dfltName$, "Choose output CSV file:", "csv");
outfile = fopen(outfileName$, "w");
fprint(outfile, "musym,acres,muname,mukind");

for i = 1 to xSoilVec.$Info.NumPolys {
key$ = xSoilVec.Poly[i].mapunit.musym$;
polyarea = xSoilVec.Poly[i].POLYSTATS.Area;

if (soilAreaHash.Exists(key$)) {

CreateTempRaster(rast, 1, 1, "binary");

ViewSaveSnapshot(View, rast.$Info.Filename, "snap", "snapshot of view");

if (MenuChoice$ == "JPEG") {
OpenRaster(ras, rast.$Info.Filename, "snap");
ConvertCompToComp(ras, rast.$Info.Filename, "snapa", 24);
CloseRaster(ras);
jpegHandle.exportCompressFactor = 75;
ExportRaster(jpegHandle, _context.ScriptDir + "snapshot.jpg",

rast.$Info.Filename, "snapa");
RunAssociatedApplication(_context.ScriptDir + "snapshot.jpg");
}

[... similar steps for PNG, BMP, PCX, and GIF formats omitted...]

else if (MenuChoice$ == "TIFF") {
tiffHandle.CompressionType = "NONE";
tiffHandle.PlanarConfiguration = "Pixel interleaved";
tiffHandle.ExportGeoTags = 1;
OpenRaster(ras, rast.$Info.Filename, "snap");
ConvertCompToComp(ras, rast.$Info.Filename, "snapa", 24);
CloseRaster(ras);
ExportRaster(tiffHandle, _context.ScriptDir + "snapshot.tif",

rast.$Info.Filename, "snapa");
RunAssociatedApplication(_context.ScriptDir + "snapshot.tif");
}

else if (MenuChoice$ == "TXT") {
ExportRaster(asciiHandle, _context.ScriptDir + "snapshot.txt",

rast.$Info.Filename, "snap");
RunAssociatedApplication(_context.ScriptDir + "snapshot.txt");
}

else if (MenuChoice$ == "DOC") {
ExportRaster(asciiHandle, _context.ScriptDir + "snapshot.doc",

rast.$Info.Filename, "snap");
RunAssociatedApplication(_context.ScriptDir + "snapshot.doc");
}

DeleteTempRaster(rast);

Excerpt from Snapshot Macro Script
(Snapshot.sml)

Create a temporary raster and
then get the filename from it.Get the snapshot.

Export and open the snapshot.

Delete the temporary file.

proc cbSave() {

outfile = GetOutputTextFile(_context.ScriptDir, "Choose file...", "txt");

textfile$ = GetOutputFileName(_context.ScriptDir, "Choose file...", "txt");
outfile = fopen(textfile$, "w", "ASCII");
fprintf(outfile, "Raster: %s\nCells: %d\nNull Cells: %d\nMinimum:

%.2f\nMaximum: %.2f\nMean: %.2f\nStandard Deviation:
%.2f\nArea: %.2f\nPerimeter: %.2f\nCentroid: %.2f, %.2f\n
Surface Area: %.2f", rasterName$, count, cells - count, min, max,
mean, stdDev, larea, lperimeter, centroid.x, centroid.y, lsurface);

fprintf(outfile, "\nDistance Units: %s\nArea Units: %s\n\n",
distMenu.value, areaMenu.value);

fclose(outfile);

RunAssociatedApplication(textfile$);
}

Area Statistics Tool Script (regstats.sml)
with modifications (red) to open output file

(modified version: regstats2.sml)
Called when the save button is pressed.
Saves statistics to text file.

Prompt user for the name of the output text file,
open the file, write to it, and close it

Called when user presses right mouse button.

get the georeference for the soil vector

Region created by tool has screen coordinates; must translate to
map coordinates of the view (view coordinates) and then to map
coordinates of the vector object in the active layer.

convert region to temporary vector object to use for extraction

extract the area of the
soil vector object to a
temporary vector for
processing

prompt user for name of output CSV file; open file and write header line

loop through extracted polygons to get areas from POLYSTATS table;
use HASH to keep track of soil types and accumulate areas

soil type is already in
the soil area hash

add area of current polygon to value already stored for that soil

new soil type assign area of polygon to soil
area hash key
assign element number of
polygon to polynum hash key

get list of hash keys as a stringlist to loop through them

loop through keys by numeric position in stringlist (starting with 0)

soil identifier

area for soil type; convert area
from square meters to acres

Excerpt from Soil Info Tool Script
(Soil_Info.sml)

get soil name and kind from fields in mapunit table
using polygon numbers stored in polynum hash

field contains commas, so must be quoted for use in CSV file

write values to a line in the output CSV file

keylist = soilAreaHash.GetKeys();

polynum = polyNumHash[musym$];

end of OnRightButtonPress

Open text file in
associated program

launch program associated
with the CSV file type
(e.g. Excel)

