
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • April 2005

Draw into CAD Object in a Script
Sample Tool Script

Line Profile window created by the PipeProfileCAD tool script,
showing a vertical profile of a selected section of a subsurface
pipe network. The upper black line connects surface manholes;
the subsurface pipes are drawn in red. The graph is drawn into
the window by the script using database values for a contiguous
set of line elements selected interactively in the View. The
currently active line element is highlighted in purple.

Display of a CAD object that replicates the pipe profile
graphic from the Line Profile window. Pushing the Save
Graph As CAD button on the Line Profile window (left)
redraws the profile to a selected new CAD object. In this
example the same drawing attributes, colors, and font were
used in the tool script to create both the window graphic and
the CAD object, and the results are virtually identical.

GUI_DLG CAD

GUI_CANVAS GRDEVICE_CAD

GC

Dialog window CAD object

Control allowing drawing
in a dialog window

Graphics rendering device for
drawing into a CAD object

Graphics context for drawing; provides methods
for drawing lines, arcs, shapes, and text

(SML class names in blue.)

Geospatial script class structures for drawing
into a dialog window (left) and CAD object (right).

A CAD object in TNTmips can contain either geospatial data
or nongeoreferenced graphics related to your geospatial data,
such as data plots, profiles, a rendered database table, or
map-margin graphics. The TNT geospatial scripting lan-
guage (SML) can be used to draw graphical elements (lines,
arcs, geometric shapes, and text) into a CAD object that can
then be used in map layouts or exported to a CAD file for-
mat for use with other software products.
The PipeProfileCAD tool script shows that the same power-
ful drawing methods can be used to draw graphics into a
dialog window created by the script and to then replicate
and save the same plot as a CAD object when needed. The
primary purpose of this script is to present an on-screen ver-
tical profile of a selected portion of an underground pipe
network. (The color plate entitled Sample Tool Script: In-
frastructure Graphical Profile expands upon the design of
this script for drawing the plot to an on-screen window.) The
script can then save this on-screen profile to a CAD object
when the Save Graph as CAD button on the window is

pressed. Generic methods for drawing graphic elements are
provided by a GC (graphics context) class that can be used
in conjunction with either a dialog window or a CAD object.
The script class hierarchies for these two applications are
illustrated in the diagram below, and their use is compared
in the drawing procedure code excerpts included on the op-
posite side of this page.

GC

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • April 2005

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/freestuf/scripts.htm.

Script Excerpts for Pipe Profile Script (PipeProfileCAD.sml)

proc drawGraphForCAD(class GC gc) {
local class COLOR color;
gc.DrawTextSetFont("ARIAL");

setTrans(pipeBottom);

proc drawGraph() {
pipeBottomSave = pipeBottom;
pipeTopSave = pipeTop;
pipeFaceSave = pipeFace;

createGC();
gc.DrawTextSetFont("ARIAL");
local class COLOR color;

setTrans(pipeBottom);

local string xlabel = "Distance (m)";
local string ylabel = "Elevation (m)";
local numeric drawTwoPointLines = 0;
local numeric drawStartEndPoints = 1;

local numeric fontHeight = 12, axisLabelOffset = 3;
setGraphOffsets(gc, fontHeight, axisLabelOffset);

local class COLOR bgcolor;
bgcolor.red = 98; bgcolor.green = 98; bgcolor.blue = 98;
drawBackground(gc, bgcolor);

color.red = 80; color.green = 80; color.blue = 80;
drawGrid(gc, getGridIntervalX(), getGridIntervalY(), pipeBottom, color);

color.red = 0; color.green = 0; color.blue = 0;
drawGraphAxes(gc, pipeBottom.GetVertex(pipeBottom.GetNumPoints()-1).x,

xlabel, ylabel, drawTwoPointLines, color, fontHeight, axisLabelOffset);

local class COLOR fill = vectorLayer.SelectedElemColor;
drawRectangles(gc, pipeFace, color, fill, fillToggle.GetValue());

class POLYLINE manholeSurfaceLine;
if (doUseDEM()) {

gc.DrawSetLineStyle("");
color.red = 0; color.green = 0; color.blue = 0;
drawPolyline(gc, smoothedSurface, color);
manholeSurfaceLine = demSurface;
}

else {
color.red = 0; color.green = 0; color.blue = 0;
drawPolyline(gc, surface, color);
manholeSurfaceLine = surface;
}

color.red = 20; color.green = 80; color.blue = 20;
drawManholes(gc, manholeDepth, manholeSurfaceLine, color);

color.red = 0; color.green = 0; color.blue = 0;
drawManholeNames(gc, manholeSurfaceLine, manholeNames, color,

"ARIAL", 12);

canvas.Refresh(1);
}

save pipe top and
bottom for highlighting

create graphics
context for graph

set up the affine transformation for the graph

set up graph axes

set the graph offsets
- (globals)

fill in the background

draw the grid

draw and label the axes

draw the pipe face

draw the surface line
(as DEM or from DB)

draw smoothed
DEM surface line

draw surface line

draw the manholes

draw the manhole labels

Procedure used to draw the graph in the dialog window;
uses global GC to allow interactive element highlighting

set up the affine transformation for the graph

Procedure for drawing graph in CAD object; passed a
local GC when called by the OnSaveGraph() procedure

local string xlabel = "Distance (m)";
local string ylabel = "Elevation (m)";
local numeric drawTwoPointLines = 0;
local numeric drawStartEndPoints = 1;

local numeric fontHeight = 12, axisLabelOffset=3;
setGraphOffsets(gc, fontHeight, axisLabelOffset);

local class COLOR bgcolor;
bgcolor.red = 98; bgcolor.green = 98; bgcolor.blue = 98;
drawBackground(gc, bgcolor);

color.red = 80; color.green = 80; color.blue = 80;
drawGrid(gc, getGridIntervalX(), getGridIntervalY(), pipeBottom, color);

color.red = 0; color.green = 0; color.blue = 0;
drawGraphAxes(gc, pipeBottom.GetVertex(pipeBottom.GetNumPoints()-1).x,

xlabel, ylabel, drawTwoPointLines, color, fontHeight, axisLabelOffset);

local class COLOR fill = vectorLayer.SelectedElemColor;
drawRectangles(gc, pipeFace, color, fill, fillToggle.GetValue());

class POLYLINE manholeSurfaceLine;
if (doUseDEM()) {

gc.DrawSetLineStyle("");
color.red = 0; color.green = 0; color.blue = 0;
drawPolyline(gc, smoothedSurface, color);
manholeSurfaceLine = demSurface;
}

else {
color.red = 0; color.green = 0; color.blue = 0;
drawPolyline(gc, surface, color);
manholeSurfaceLine = surface;
}

color.red = 20; color.green = 80; color.blue = 20;
drawManholes(gc, manholeDepth, manholeSurfaceLine, color);

color.red = 0; color.green = 0; color.blue = 0;
drawManholeNames(gc, manholeSurfaceLine, manholeNames, color,

"ARIAL", 12);
}

set up graph axes

set the graph offsets
- (globals)

fill in the background

draw the grid

draw and label the axes

draw the pipe face

draw the surface line
(as DEM or from DB)

draw smoothed
DEM surface line

draw surface line

draw the manholes

draw the manhole labels

proc OnSaveGraph() {

GetOutputCAD(CADgraph);

deviceCAD.Create(CADgraph , getHeight(), getWidth());

local class GC gcCAD;
gcCAD = deviceCAD.CreateGC();

drawGraphForCAD(gcCAD);

deviceCAD.Close();

CloseCAD(CADgraph);
}

create GREDEVICE for drawing into CAD object

create local graphics
context for the device

call procedure to draw the
graph for the CAD object

close CAD graphics device

close CAD object

Procedure called when Save Graph as
CAD button on dialog is pressed

prompt user to select output CAD object

refresh the
drawing canvas

