
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • August 2005

Measure Strike/Dip of Geologic Features
Sample Tool Script

The patterns traced across the landscape by layered rock units provide key evidence about
surface and near-surface geologic structure. Geologists can map these surface features re-
motely using aerial or satellite images, but in order to quantify the structural geometry, they
need measurements of the strike and dip (measures of 3D orientation) of the rock layers at
many locations. This Tool Script enables geologists to measure and record the strike and dip
of bedding or other map-scale planar features (such as joints, faults, dikes, and others) using
a reference image overlaid on an elevation raster in the View. Key portions of the script are
excerpted on the opposite side of this page. The script solves the classic “3-point problem”
of structural geology: given the x-y-z coordinates of three non-colinear points on a plane,
compute the strike and dip of the plane.
In the Tool Script’s default Add mode, you use a standard polygon tool provided by the script
to indicate in the View window the locations of the three required points (as triangle vertices)
on a planar geologic feature. The script reads the elevation for each point from the elevation
raster (which must be the first layer in the group), determines the corresponding plane, com-
putes its strike azimuth, dip angle, and dip azimuth, and shows these values in the script’s
control window. The script also computes the outcrop trace of the computed plane over the
terrain surface in the vicinity of the measurement point and draws this trace in the view.
Comparing this trace to the local outcrop pattern shown by the reference image provides you
with a visual quality-control assessment of the accuracy of the computed orientation of the
plane. The polygon tool remains active to allow you to adjust the triangle vertices, if neces-
sary, yielding a revised set of orientation values and a new outcrop trace. When you accept
the orientation measurement, a point element is added to the designated Strike/Dip vector
object and the orientation values are stored in an attached record in the associated point
database. These points are also automatically styled by CartoScript with the appropriately-
oriented and labeled symbol for the
strike and dip of bedding. The Tool
Script can be revised easily to ref-
erence a different CartoScript for
styling symbols for other planar
geologic features.

Measurement locations are added as point
elements to a vector object and automati-
cally styled using the appropriately-
oriented and labeled strike and dip symbol
from an accompanying CartoScript.

In the Tool Script’s View mode, you can select one or
more data points and turn on their outcrop traces for
mutual comparison and to help map outcrop patterns.

The outcrop trace line for each measurement location is also added to a separate
vector object with your selected line color. In the Tool Script’s View mode, you can
left-click on any strike-dip symbol to select it and use the Accept button on the Tool
Script’s control window to toggle the point’s outcrop trace on or off. In this manner
you can turn on and view several outcrop traces simultaneously. These computed
outcrop traces can help you trace outcrop patterns and contact positions through
areas of poor exposure (due to vegetation or soil cover) that might surround your
measurement points.
The Tool Script’s Edit mode allows you to select and edit existing strike-dip mea-
surements. Selecting a point in this mode reactivates the polygon tool with its former
vertex locations so that you can adjust its position and compute revised orientation
measurements and a revised outcrop trace. You can also delete points and their ac-
companying outcrop traces using the Tool Script’s Delete mode.

CartoScripts for various geologic
map features are available for
free download from:
www.microimages.com/
freestuf/cartoscripts/

The point
symbol is placed
at the center of
the triangle and
styled by
CartoScript.

In Add mode, use the polygon tool to draw a triangle on the
desired planar feature (above left). Use the Line/Polygon Edit
Controls (left) to adjust the triangle if needed, then press
[Apply] or press the right mouse button. The computed values
for the plane are shown in the Tool Script’s control window
(right) and the outcrop trace is drawn in the View in the selected
color (above right). Press [Accept] on the control window to

store the point and its data.

The Tool Script’s control window provides
View, Add, Edit, and Delete modes.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • August 2005

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language for scripts
and queries. These scripts can be downloaded from www.microimages.com/freestuf/scripts.htm.

Script Excerpts for Strike-Dip Tool Script (StrikeDipTool.sml)

func class POINT3D computePlanarCoefficients() {

local class POINT3D pt1, pt2, pt3;
local class POINT3D pt21, pt31;
local class POINT3D ctrPt;

pt1 = setXY(1);
pt1 = setZ(pt1,1);
pt2 = setXY(2);
pt2 = setZ(pt2,2);
pt3 = setXY(3);
pt3 = setZ(pt3,3);

if (!(isZValid(pt1.z) && isZValid(pt2.z) && isZValid(pt3.z))) {
string s$ = "Error: One (or more) of the points has an invalid elevation.";
PopupMessage(s$);
ctrPt.x = NullValue(DEM);
ctrPt.y = NullValue(DEM);
ctrPt.z = NullValue(DEM);
return ctrPt;

} else {
pt21 = computeDifference(pt2, pt1);
pt31 = computeDifference(pt3, pt1);

a = Determinant(pt21.y, pt21.z, pt31.y, pt31.z);
b = Determinant(pt21.x, pt21.z, pt31.x, pt31.z) * -1;
c = Determinant(pt21.x, pt21.y, pt31.x, pt31.y);

ctrPt = computeCenterPoint(pt1, pt2, pt3);
createPlaneRaster(pt1, pt2, pt3);
return ctrPt;

}
}

proc computeNonVerticalPlane() {

dipX = a / c;

if (b == 0)
{

if (a == 0)
{

dipAng = 0;
strikeAng = null;
dipDir = null;

}
else {

dipAng = atand(dipX);

if (dipAng < 0) then dipAng = -1 * dipAng;

if (dipX > 0) {
dipDir = 90;
strikeAng = 0;

}
else {

dipDir = 270;
strikeAng = 180;

}
}

} else {

dipY = b / c;

dipAng = atand(sqrt(sqr(dipX) + sqr(dipY)));

if (dipAng < 0) dipAng = -1 * dipAng;

dipDir = atand(dipX / dipY);

if (dipDir == 0) {

if (dipY < 0) dipDir = 180;
}

if (dipDir < 0) {

if (dipX > 0) {
dipDir = 180 + dipDir;

}

else {
dipDir = 360 + dipDir;

}
}

else if (dipX < 0) dipDir = 180 + dipDir;

strikeAng = dipDir - 90;

if (strikeAng < 0) strikeAng = 360 + strikeAng;
}

}

Function to compute linear coefficients of the equation
of the plane from the three 3D points in the polyline tool

three points on a plane

differences between point positions

call functions to get X,Y coordinates
from three polyline vertices and to
find corresponding Z value from
elevation raster

if one of the z values is bad, then stop - return invalid ctrPt

Compute linear coefficients for the equation of the plane

compute the center point of the triangle; this is the point that is
created and attributed with the information about strike and dip

Procedure to compute the strike and dip for a nonvertical plane

partial derivative of dip in x-direction
(opposite of the slope component)

plane is parallel to y-axis (north-south), dipY is 0

plane is parallel to both x and y and thus is horizontal

strikeAng is undefined

plane is not horizontal, strike is north-south

dip direction is due east

partial derivative of dip in y-direction
(opposite of the slope component)

compute dip angle
from dipX and dipY

compute azimuth of dip direction from dipX and dipY; value
returned by atand() is between -90 and +90, so must adjust
result to get positive azimuth value between 0 and 360
depending on which quadrant dip vector is in

dip direction is south

dip direction is due north or south

dip direction in SE or NW quadrants,
must adjust value

dip direction in SE quadrant

dip direction in NW quadrant

dip direction in SW quadrant, must adjust value

compute strike angle from dip direction and convert
negative values to positive azimuth in range 0 to 360

strike direction from right-hand rule

func class POINT3D setZ(class POINT3D pt3d, numeric num) {
local class POINT3D tmp;
tmp.x = pt3d.x; tmp.y = pt3d.y;

tmp = TransPoint2D(tmp, ViewGetTransViewToScreen(View, 1));

tmp = TransPoint2D(tmp, ViewGetTransMapToView(View,
rasterLayer.MapRegion.CoordRefSys, 1));

local class Georef georef;
local class POINT2D objcoord;
georef = GetLastUsedGeorefObject(DEM);
objcoord = MapToObject(georef, tmp.x, tmp.y, DEM);

numeric cellval = DEM[objcoord.y, objcoord.x];
tmp.z = cellval;
return tmp;

}

compute dip angle from dipX

strike not parallel to y-axis, dipY is nonzero

dip direction is due west

Function to get the z value from the elevation
raster at the location of a polyline vertex

convert from screen to view coords

convert from view to map coords

convert from map coordinates
to object coordinates

with the object coordinates we can get the cell value

a raster cell value

func class POINT3D setXY(numeric num) {
local class POINT3D tmp = poly.GetVertex(num - 1);
return tmp;

}

Function to get the x and y screen coordinates from a polyline vertex

