
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • August 2003

ActiveX Callbacks to SML
SML scripts can launch and communicate with ActiveX
component software programs created in Visual Basic,
C++, or Java. The method of communication between
an SML script and an ActiveX dialog window that it
launches depends on whether the dialog is set to oper-
ate as a modal or modeless dialog. A modal dialog in an
ActiveX program takes sole control of SML script in-
teractions, so that no further parts of the script are
executed until the modal dialog closes. Using a modeless
dialog in an ActiveX program allows the SML script to
continue to execute even while the dialog is open.
Communication between a modal ActiveX component
dialog and an SML script is simple and indirect, since
the script and dialog are not actually active at the same
time. The SML script can pass data to “imported” com-
ponent class members before the dialog opens and
retrieve information from component class members af-
ter the dialog closes. The SML script can then take
actions using or conditional upon the data retrieved.
Use of a modeless ActiveX component dialog re-
quires ongoing communication between the dialog
and the SML script. SML permits such communica-
tion, so that user interactions with a modeless
component dialog can directly trigger actions by the
SML script, such as the display or redisplay of a TNT
View. When you create the ActiveX component class,
you can define events associated with the dialog con-
trols, such as the press of a particular button. Each event
is provided with an associated class method that can be
used in the SML script to register the name of a func-
tion elsewhere in the script that will be called and
executed in response to that dialog event.
To provide an example of SML script interaction with
a modeless ActiveX component dialog created in Vi-
sual Basic, MicroImages has modified the sample
application described in the color plate entitled Com-
municate with Visual Basic Programs using SML.
This application uses an SML tool script to provide in-
teractive selection of vector polygons representing land
parcels in a TNT View window, and a dialog opened by

An ActiveX component created in Visual Basic can be
compiled as a simple executable file or as a dynamic link
library (DLL). The latter method allows multiple instances
of the component to run simultaneously. A modal ActiveX
dialog can be activated from either form of component.
However, if your component uses a modeless dialog, you
must compile it as a simple executable file.

a Visual Basic program in which the user enters owner-
ship information used to update the parcel database in
TNTmips or some other relational database. A new
ActiveX component class has been created to provide
either modal or modeless versions of the dialog, depend-
ing on the class method called in the SML script. The
sample tool script ParcelToolModeless.sml opens the
modeless form of the dialog, which remains open as you
select parcel polygons in the TNT View and update their
ownership information in the Visual Basic dialog. This
script includes callback functions registered with the
Apply and Close buttons on the Visual Basic dialog.
The sample tool script ParcelToolModal.sml opens the
modal form of the dialog, which does not require SML
callback functions. Excerpts of both of these scripts are
shown on the other side of this page.

Modeless Visual Basic dialog “Owner Form” (in the imported
class VBForm) that is launched by the ParcelToolModeless
tool script. After the names are filled in, pressing the Apply
button calls an OnApply() function in the tool script that
reads the name fields from the VBForm class and updates
the ParcelInfo database table and the TNT View window.

You can download the files required to run this demonstration
from microimages.com/freestuf/smlscripts.htm. After
downloading and unzipping the VBDEMO2 file, do the
following in the VBDEMO2 directory:

Double-click on MicroImages_SML_OLE_Demo_EXE.exe
to register the ActiveX component.

In Display, open the saved group ParcelGroup from the
Parcels Project File. The sample tool scripts are pre-
installed in this group.

Run the ParcelTool Modeless tool script.

1.

2.

3.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • August 2003

func OnLeftButtonPress () {
if (checkLayer()) {

local class POINT2D point;
local numeric num;
local string parcelID$;

point.x = PointerX; point.y = PointerY;
point = View.GetTransLayerToScreen(vectorLayer).ConvertPoint2DInv(point);

num = FindClosestPoly(targetVector, point.x, point.y, GetLastUsedGeorefObject(targetVector));

if (num > 0) {
elementNum = num;
vectorLayer.Poly.HighlightSingle(elementNum);
parcelID$ = targetVector.Poly[elementNum].ParcelInfo.ParcelID$;

form.Clear();
form.ElemID = parcelID$;
form.LastName = targetVector.Poly[elementNum].ParcelInfo.OwnerLastName$;
form.FirstName = targetVector.Poly[elementNum].ParcelInfo.OwnerFirstName$;

form.ShowDialog();
}

}
}

func OnApply () {
if (elementNum > 0) {

targetVector.Poly[elementNum].ParcelInfo.OwnerLastName$ = form.LastName;
targetVector.Poly[elementNum].ParcelInfo.OwnerFirstName$ = form.FirstName;
TableTriggerRecordChangedCallback(parceltable);
vectorLayer.UnhighlightAllElements();
}

}

func OnClose () {
View.SetDefaultTool();
}

func OnInitialize () {
if (Layout) {

WidgetAddCallback(Layout.GroupSelectedCallback, cbGroup);
activegroup = Layout.ActiveGroup;
}

else
activegroup = Group;

form.SetOnApply(OnApply);
form.SetOnClose(OnClose);

}

func OnActivate() {
form.ShowDialog();
}

func OnDeactivate() {
form.HideDialog();
}

func OnLeftButtonPress () {
if (checkLayer()) {

... [same as
above excerpt]...

if (elementNum > 0)
vectorLayer.Poly.HighlightSingle(elementNum);
parcelID$ = targetVector.Poly[elementNum].ParcelInfo.ParcelID$;

form.Clear();

form.ElemID = parcelID$;
form.LastName = targetVector.Poly[elementNum].ParcelInfo.OwnerLastName$;
form.FirstName = targetVector.Poly[elementNum].ParcelInfo.OwnerFirstName$;

form.DoModal();

targetVector.Poly[elementNum].ParcelInfo.OwnerLastName$ = form.LastName;
targetVector.Poly[elementNum].ParcelInfo.OwnerFirstName$ = form.FirstName;

TableTriggerRecordChangedCallback(parceltable);
vectorLayer.UnhighlightAllElements();

}
}

Excerpt of Tool Script ParcelToolModal.sml

Excerpt of Tool Script ParcelToolModeless.sml

get screen coordinates from cursor and transform to layer coordinates

set local variables

if the selected layer is valid, proceed

called when user presses ‘left’ pointer/mouse button

No callbacks are required with a modal Visual Basic dialog
because the VB dialog and SML script are not active
simultaneously. After the VB dialog closes, the SML script
merely reads information from the VBForm class.

clear fields in VB
Dialog window pass the parcel ID and other parcel attributes

to the VBForm class to show in dialog

open the Owner Form window as a modal dialog

set values in parcel table from info entered in Visual Basic dialog (now closed)

notify RVC that table has changed
and unhighlight all elements

<no script activity until the modal VB dialog closes>

get the element number of the enclosing polygon

highlight polygon;
get the parcel ID
for the polygon
from the database

clear fields in VB Dialog window; pass the parcel ID and other
parcel attributes to the VBForm class to show in dialog

open the Owner Form window as a modeless dialog;
SML script remains active as long as tool is active

function called when the Apply button on the Visual Basic dialog is pressed

function called when the Close button on the Visual Basic dialog is pressed

reset tool icon buttons on View when VB dialog closes

function called the first time the tool is activated

called each time the tool is activated

called each time the tool is deactivated

show the VB dialog

hide the VB dialog

register callback functions in the script
with the Visual Basic dialog

set values in parcel table from info entered in Visual Basic dialog

notify RVC that table has changed
and unhighlight all elements

Each type of event defined for the Visual Basic dialog
is provided with a method in the imported class that
you can use to assign a function in the SML script that
is called and executed when that dialog event occurs.

This tool script opens the modeless version of
the Owner Form Visual Basic dialog window.
Functions in the tool script are called by the
Apply and Close buttons on the dialog.

highlight polygon get the parcel ID and
other attributes for the
polygon from database

