
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • April 2003

5. Left-click to select a
parcel polygon. The
toolscript passes the parcel
ID from the vector’s
ParcelInfo table to the
VBTestForm data structure.

Communicate with

Example: Database Entry using Visual Basic Form

4. Run the
ParcelToolVB SML
toolscript; the script
imports the Visual
Basic class named
VBTestForm.

The toolscript calls the
VBTestForm class method
that opens the Test Form
dialog window created in
Visual Basic.

6. Enter names into the
First Name and Last
Name fields in the Test
Form dialog and press
[OK].

The toolscript retrieves the
names from the VBTestForm
data structure and writes
them to the appropriate fields
in the ParcelInfo table in the
vector’s polygon database.

MicroImages has created a sample application to demonstrate how an SML
script can access program actions and dialogs created in Visual Basic.
This example uses an SML Tool Script to provide interactive selection of
vector elements in a View window in TNTmips. When you run the script
and select a vector polygon representing a land parcel, a form dialog
created in Visual Basic opens for you to enter owner name information to
be added to the database record for the parcel. Functions and data
structures registered with the Visual Basic application are directly acces-
sible in SML and are used by SML to send data to and retrieve data from
the Visual Basic form.
The sample SML toolscript and Visual Basic code are shown on the other
side of this page. You can download these and other files required to run
this demonstration from: microimages.com/freestuf/smlscripts.htm.
After downloading and unzipping the VBDEMO file, take the following steps:
1. Run the Setup program to register the Visual Basic component program.
2. In TNTmips, display the vector object Parcel from the Parcels Project
File.
3. Install the ParcelToolVB toolscript button on the View window (View
window’s Options / Customize / Tool Scripts...).

Visual Basic Programs using SML

The Visual Basic demonstration component
described here lets you modify records in a
database table stored in a TNTmips Project File.
But that table could instead be an ODBC link to a
table maintained in Access or other database
software. Either way, the appropriate records are
updated and available to subsequent TNT
operations. You could also write your Visual
Basic application to take the database information
provided by TNTmips and communicate directly
with Access or any other ActiveX-aware software.

To implement a Visual Basic (VB) component for
use with TNTmips, take these steps:

design a VB form (dialog window) if a user
interface is required
create properties, methods, and data struc-
tures in VB as needed
write an SML script that "imports" the VB
component and handles data transfer be-
tween VB and your TNT spatial data and
attached database attributes
use the Visual Studio 6.0 Tools / Package and
Deployment Wizard to build an installation
package to allow others to install and use the
component program

Your SML (Spatial Manipulation Language)
scripts in TNTmips can now use Microsoft Win-
dows ActiveX technology to launch and
communicate with component software pro-
grams created in Visual Basic, C++, or Java. An
SML script can directly access component class
structures (data structures and methods), open a
component dialog window (form), and exchange
data between SML and the dialog window. Any
spatial or attribute data that the SML script reads
from your TNT objects can be transmitted to the
component program. Any information processed
by the component program can be transmitted
to other application programs or sent back to
SML to be written to your Project File data.

Access,

SQL Server,

ORACLE

TNTmips

SML Database

Visual
Basic

O D B C

Other
Application

Software

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • April 2003

$import MicroImages_SML_OLE_Demo.VBTestForm

class VECTORLAYER vectorLayer;
class Vector targetVector;
class GROUP activegroup;
class VBTestForm form;
class Database ParcelDB;

func OnLeftButtonPress () {
if (checkLayer()) {

local class POINT2D point;
local numeric elementNum;
local string parcelID$;

point.x = PointerX;
point.y = PointerY;
point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));
point = TransPoint2D(point, ViewGetTransMapToView(View, vectorLayer.Projection, 1));

elementNum = FindClosestPoly(targetVector, point.x, point.y, GetLastUsedGeorefObject(targetVector));

if (elementNum > 0)
vectorLayer.Poly.HighlightSingle(elementNum);
parcelID$ = targetVector.Poly[elementNum].ParcelInfo.ParcelID$;

form.Clear();

form.ElemID = parcelID$;

form.ShowDialog();

targetVector.Poly[elementNum].ParcelInfo.OwnerLastName$ = form.LastName;
targetVector.Poly[elementNum].ParcelInfo.OwnerFirstName$ = form.FirstName;

}
}

Excerpt of Parcel Tool Script (ParcelToolVB.sml)

Option Explicit
Private mElemID As String
Private mFirstName As String
Private mLastName As String

Public Sub Clear()
 mFirstName = ""
 mLastName = ""
 mElemID = ""
End Sub

Public Property Get ElemID() As String
 ElemID = mElemID
End Property
Public Property Get FirstName() As String
 FirstName = mFirstName
End Property
Public Property Get LastName() As String
 LastName = mLastName
End Property
Public Property Let ElemID(ByVal str As String)
 mElemID = str
End Property
Public Property Let FirstName(ByVal str As String)
 mFirstName = str
End Property
Public Property Let LastName(ByVal str As String)
 mLastName = str
End Property

Private Sub Class_Initialize()
 Clear
 Debug.Print "Initialize Thing, ID=" & mElemID & " Name=" & mLastName & ", "_

& mFirstName
End Sub

Private Sub Class_Terminate()
 On Error Resume Next
 Debug.Print "Terminate Thing, ID=" & mElemID & " Name=" & mLastName & ", "_

& mFirstName
End Sub

Public Sub ShowDialog()
 Dim mdlg As dlgDemo
 Set mdlg = New dlgDemo
 With mdlg
 .txtDemo.Text = mElemID
 .txtFirstName = mFirstName
 .txtLastName = mLastName
 .Caption = “Test Form”
 .Show vbModal
 If .WasOK Then
 mFirstName = .txtFirstName
 mLastName = .txtLastName
 mElemID = .txtDemo
 End If
 End With
End Sub

Visual Basic Source Code for VBDEMO

clear fields in VB Dialog window if it has already been opened

end of OnLeftButtonPress()

Get screen coordinates from cursor and transform to map coordinates

Set local variables

if the selected layer is valid, proceed

called when user presses ‘left’ pointer/mouse button

variable declarations

declare instance of imported VB class VBTestForm

use preprocessor keyword to “import” the Visual Basic component class VBTestForm.
Note that preprocessor command lines must NOT end in a semicolon (;).

highlight polygon get the parcel ID for the
polygon from the database

pass the parcel ID to the VBTestForm
data structure to show in the form

open the Test Form dialog window

read the strings entered in the name fields in Test Form
and write them to the record in the ParcelInfo table

(MicroImages_SML_OLE_Demo.VBTestForm)

(use the Edit icon button in the Customize Tool Script window to view the script)

After you have opened the script in the SML
Editor window and checked syntax, the imported
class appears in the Insert Class window

define class method to open
the Test Form dialog window

define class method to
clear the fields in the Test
Form dialog window

define read/write
properties of
variables used
for fields in Test
Form

define private data variables

called when OK button is pressed

transfer dialog field values
to private data variables

initialize the component class

terminate the component class

NOTE: The dialog window (form) is constructed in Visual Basic
using the graphic Form Designer or the Application Wizard

NOTE: to enable multiple instances of the
component class to be used in SML, build
your Visual Basic project as an ActiveX DLL
rather than an ActiveX EXE.

