
                                       MicroImages, Inc.   •   TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554   •   Support +1 402 477 9562   •   info@microimages.com   •   www.microimages.com  •  January 2003

Nested SML Dialogs using XML
You can use an SML script to automate complex
processing sequences involving multiple input
and output objects of different types and varied
processing parameters to be set by the user.  Al-
though SML provides standard pop-up dialogs
for various types of user inputs, you can make
the script easier to use by creating one or more
custom dialog windows that bring together the
various user input tasks.
The sample script devegX.sml (available for free
download at www.microimages.com/freestuf/
smlscripts.htm) provides a good example of a
script that uses several custom dialog windows
that are constructed using XML dialog specifi-
cations embedded in the SML script. The script
is designed to process a multispectral image to
suppress the expression of vegetation and enhance the
contrast of background rock and soil (see the color plate
entitled Suppressing Vegetation in Multispectral Im-
ages).
The main dialog window opened by the script is used to
select input and output objects and to set most process
parameters.  It is a modal dialog, meaning that the win-
dow must be closed with its OK or Cancel button be-
fore the remainder of the script can be executed.  The
dialog window includes pushbuttons, toggle buttons,
labels, edittext and editnumber controls, and a listbox,
all of which are completely defined by XML code em-
bedded in and interpreted by the SML script.  Many of
the controls are initially disabled, but are activated  in
sequence by callback procedures when required param-
eters higher in the dialog are set.  This design leads the
user through the controls and ensures that all required
input objects and parameters are set before the OK but-
ton is activated.
The Set Dark Pixel Values window is opened by press-
ing a push-button on the main window.  This window
presents a list of the selected input objects (as a sequence
of label elements) and an accompanying numeric field
to be edited by the user.  Only the most general ele-
ments of this dialog can be specified by static XML code
in the script; the list of labels and the numeric fields
must be constructed dynamically from the input objects
that the user has previously selected.  The procedure
called by the Set dark pixel values... pushbutton on the

main window (shown on
the reverse side of this
plate) first reads the static
XML code for the new
window and parses it into
memory.  Additional XML
elements corresponding to
the object list and
editnumber fields are then
added to the XML struc-
ture before the dialog is
opened.
This script also provides examples of copying and modi-
fying a color palette and creating and adding elements
to a CAD object.

Display of a correlation raster
(horizontal axis = vegetation index
value, vertical axis = band value)
with color palette, both created by

the script.  The overlay is a CAD
object created by the script that

graphs the smoothed values
of average band value

per vegetation index



                                       MicroImages, Inc.   •   TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554   •   Support +1 402 477 9562   •   info@microimages.com   •   www.microimages.com  •  January 2003

proc SetDP () {

xmldp$ = ‘<?xml version=”1.0"?>
<root>

<dialog id = “dpdlg” title = “Set Dark Pixel Values” OnOK = “dpOK()” >
<label>Set Dark Pixel (Path Radiance)</label>
<label>Correction Values:</label>
<groupbox ExtraBorder = “3”>

<pane id = “dplist” Orientation = “Vertical”/>
</groupbox>

</dialog>
</root>’;

err = docdp.Parse(xmldp$);
if ( err < 0 ) {

PopupError( err );
Exit( );
}

class XMLNODE dplist;
dplist = docdp.GetElementByID( “dplist” );

class XMLNODE paneNIR;
paneNIR = dplist.NewChild( “pane” );
paneNIR.SetAttribute( “Orientation”, “Horizontal”);

class XMLNODE labelNIR;
labelNIR = paneNIR.NewChild( “label” );
nirprtext$ = sprintf(“%s.%s \\ %s”, FileNameGetName(nirfile$),

FileNameGetExt(nirfile$), nirobjname$);
labelNIR.SetText(nirprtext$);

class XMLNODE prEditNIR;
prEditNIR = paneNIR.NewChild( “editnumber” );
prEditNIR.SetAttribute( “id”, “prEditNIR” );
prEditNIR.SetAttribute( “Width”, “5” );
prEditNIR.SetAttribute( “MinVal”, “0” );
prEditNIR.SetAttribute( “MaxVal”, “255” );
prEditNIR.SetAttribute( “Default”, NumToStr(nirmin) );
prEditNIR.SetAttribute( “Precision”, “0” );

class XMLNODE paneRED;
paneRED = dplist.NewChild( “pane” );
paneRED.SetAttribute( “Orientation”, “Horizontal”);

class XMLNODE labelRED;
labelRED = paneRED.NewChild( “label” );
redprtext$ = sprintf(“%s.%s \\ %s”, FileNameGetName(redfile$),

FileNameGetExt(redfile$), redobjname$);
labelRED.SetText(redprtext$);

class XMLNODE prEditRED;
prEditRED = paneRED.NewChild( “editnumber” );

Sample scripts have been prepared to illustrate how you might use the features of TNTmips’ Spatial Manipulation
Language (SML).  If possible, the full script is printed below for your quick perusal.  When a script is too long to fit on
one page, key sections are reproduced below.  The sample script illustrated can be downloaded from the SML script
exchange at www.microimages.com/freestuf/smlscripts.htm.

Script for creating Set Dark Pixel Values window (devegX.sml)
prEditRED.SetAttribute( “id”, “prEditRED” );
prEditRED.SetAttribute( “Width”, “5” );
prEditRED.SetAttribute( “MinVal”, “0” );
prEditRED.SetAttribute( “MaxVal”, “255” );
prEditRED.SetAttribute( “Default”, NumToStr(redmin) );
prEditRED.SetAttribute( “Precision”, “0” );

if ( numbands > 0 ) {

class XMLNODE panepr;
class XMLNODE labelpr;
class XMLNODE editpr;

local string editid$;

for num = 1 to numbands {

panepr = dplist.NewChild( “pane” );
panepr.SetAttribute( “Orientation”, “Horizontal” );

infile$ = inrastfilelist.GetString( num );
inobjname$ = inrastobjlist.GetString( num );
labeltext$ = sprintf(“%s.%s \\ %s”, FileNameGetName(infile$),

FileNameGetExt(infile$), inobjname$);

labelpr = panepr.NewChild( “label” );
labelpr.SetText( labeltext$ );

editpr = panepr.NewChild( “editnumber” );
editid$ = “editnum” + NumToStr( num );
editpr.SetAttribute( “id”, editid$ );
editpr.SetAttribute( “Width”, “5” );
editpr.SetAttribute( “MinVal”, “0” );
editpr.SetAttribute( “MaxVal”, “255” );
editpr.SetAttribute( “Default”, NumToStr( rastmins[ num ] ) );
editpr.SetAttribute( “Precision”, “0” );

}
}

nodedp = docdp.GetElementByID( “dpdlg” );

if ( nodedp == 0 ) {
PopupMessage( “Could not find dialog node in XML document” );
Exit();
}

dlgdp.SetXMLNode( nodedp );

ret = dlgdp.DoModal();

}

Create string variable with
XML specification of dialog

Create empty pane with id attribute
to use when adding elements
before the window is opened

Parse XML text for dialog into memory;
return error if there are syntax errors

Modify the XML structure in
memory before opening the dialog Get the id for the parent pane

that will contain the list of
bands and the numeric fields
for the correction values

 Add horizontal pane for the first row of dialog
elements (label and numeric field for NIR band)

Add label with name of
NIR band to the NIR pane

Add editnumber field
to the NIR pane and
set its attributes

 Add horizontal pane for the second row of dialog
elements (label and numeric field for RED band)

 Add label with name of
RED band to the RED pane

Add editnumber field
to the RED pane and
set its attributes

Loop to add rows for additional bands to be processed

string variable for id for editnumber element

reusable XMLNODE class instances for
new pane, label, and editnumber field
for each additional band

create horizontal pane for row

Procedure to create dialog window to list input bands with
fields to enter dark-pixel values.  Called by pressing Set
dark pixel values... pushbutton on main dialog window

Get file/object names
for current band
(stored in stringlists)

add label to the band pane

Get the dialog element from the parsed XML text and show
error message if the dialog element can’t be found

Set the XMl dialog element as the
source for the GUI_DLG class
instance we are using for the dark-
pixel-correction dialog window

Add editnumber field
to the band pane and
set its attributes

Open the dialog window as a modal dialog

end SetDP()


