
Sample SML Tool Script

Raster Profile

MicroImages, Inc. • October 2000

The Raster Profile sample script shows how you can set
up an SML Tool Script to record and process raster val-
ues along a user-drawn line. This script, excerpts of which
are shown on the other side of this page, provides a stan-
dard two-point line tool that enables the user to draw a
straight line anywhere in the View window. The script reads
cell values from a raster in the active layer and creates a
graph in a separate dialog window showing the correspond-
ing vertical profile of the raster (cell value versus position
along the line).

Although the on-screen profile plot is the end result in
this example, you could easily modify the script to apply
other processing to the profile data. For example, profile
positions from a georeferenced raster could be converted
from raster coordinates to map coordinates, the profile
data could be output to a text file, and an external program
could be launched to create a formatted profile plot for
printing. You would implement these capabilities by add-
ing appropriate program statements to the procedure that
is called when the right mouse button is pressed
[cbToolApply()].

The profile drawn by the Raster Profile script is an ex-
ample of the type of graphic output that you can create in
a dialog window using simple SML drawing functions.

Profile from a digital elevation model raster. The
vertical graph axis is labeled with the minimum and
maximum cell values along the profile line. The
horizontal axis is labeled with the endpoint positions
in raster coordinates (column, line).

The Raster Profile script operates on the layer in the View window that
is currently active, but the active layer does not have to be the
topmost layer in the view. In the View window to the left, the lower of
two raster layers (a surface fit to electrical conductivity measurements
for an agricultural field) has been set as the active layer. The upper
reference layer is an RGB raster set showing a color aerial photograph
of the field. The profile line can then be drawn on a familiar image,
while the profile values are read from the underlying active raster
(profile shown below).

Many functions are provided to draw lines,
unfilled and filled geometric shapes, and text.
Related functions allow you to set colors and
fonts for the other drawing functions to use.

Script for Raster Profile (regstats.sml)

MicroImages, Inc. • October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options / Cus-
tomize from the View window menu bar). These scripts are then available from an icon, which you select or design, on
the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are available
only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full script is
printed below for your quick perusal. When a script is too long to fit on one page, key sections are reproduced below.
All sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-ROM in the folder
in which you installed TNTmips 6.4. These scripts, among others, can be downloaded from the SML script exchange
at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

proc cbRedraw() {
if (gc == 0) return;
ActivateGC(gc);

SetColorName(“gray75”);
FillRect(0, 0, da.width, da.height);
SetColorName(“black”);
DrawInterfaceText(sprintf(“Raster: %s”, rasterName$), 0, 10);

if (doGraph == 0) return;

local string min$, max$;
local numeric size;
local class POINT2D graph1, graph2, graph3;

min$ = sprintf(“%d”, min);
max$ = sprintf(“%d”, max);
size = strlen(max$);

graphx[1] = size*6.5+5;
graphy[1] = 20;
graphx[2] = graphx[1];
graphy[2] = da.height - 15;
graphx[3] = da.width - 5;
graphy[3] = graphy[2];
DrawPolyLine(graphx, graphy, 3);

DrawTextSetFont(“stork”);
DrawTextSetHeight(10);

DrawTextSimple(max$, 0, graphy[1]+10);
DrawTextSimple(min$, (size - strlen(min$))*6.5, graphy[2]);
DrawTextSimple(sprintf(“%d, %d”, startpoint.x, startpoint.y),

graphx[1], da.height-3);
str$ = sprintf(“%d, %d”, endpoint.x, endpoint.y);
DrawTextSimple(str$, graphx[3] - strlen(str$)*6.5, da.height-3);

SetColorName(“magenta”);

local numeric xscale, yscale, prevnull;
xscale = (graphx[3] - graphx[2] + 1) / (count - 1);
yscale = (graphy[2] - graphy[1]) / (max - min);

if (value[1] < 0 || value[1] >= 0) {
if (max - min == 0) {

DrawPoint(graphx[2], graphy[1] + (graphy[2]-graphy[1])*.5);
}

else
DrawPoint(graphx[2], graphy[2]-(value[1]-min)*yscale);

}
for i = 2 to count {

if (value[i] < 0 || value[i] >= 0) {
if (!(value[i-1] < 0 || value[i-1] >= 0)) {

if (max - min == 0) {
DrawPoint(graphx[2]+(i-1)*xscale, graphy[1] +

(graphy[2]-graphy[1])*.5);
}

else
DrawPoint(graphx[2]+(i-1)*xscale, graphy[2]-

(value[i]-min)*yscale);
}

else {
if (max - min == 0) {

DrawTo(graphx[2]+(i-1)*xscale, graphy[1] +
(graphy[2]-graphy[1])*.5);

}
else

DrawTo(graphx[2]+(i-1)*xscale, graphy[2]-(value[i]-
min)*yscale);

}
}

}
}

proc cbToolApply() {

if (checkLayer()) {
startpoint = tool.start;
endpoint = tool.end;

startpoint = TransPoint2D(startpoint,
ViewGetTransLayerToScreen(View, rasterLayer, 1));

endpoint = TransPoint2D(endpoint,
ViewGetTransLayerToScreen(View, rasterLayer, 1));

local numeric ystep, xstep;
local class POINT2D cursor;
cursor = startpoint;
count = 0;
ystep = endpoint.y - startpoint.y;
xstep = endpoint.x - startpoint.x;
if (xstep == 0 && ystep == 0)

return;
if (abs(xstep) > abs(ystep)) {

ystep = ystep / abs(xstep);
xstep = xstep / abs(xstep);
if (ystep == 0) {

count = abs(endpoint.x - startpoint.x);
}

else
count = abs((endpoint.y - startpoint.y) / ystep);

}
else {

xstep = xstep / abs(ystep);
ystep = ystep / abs(ystep);
if (xstep == 0) {

count = abs(endpoint.y - startpoint.y);
}

else

count = abs((endpoint.x - startpoint.x) / xstep);

}
count = count + 1;
doGraph = 1;

max = -1000000;
min = 1000000;

for i = 1 to count {
value[i] = targetRaster[round(cursor.y), round(cursor.x)];

if (value[i] < 0 || value[i] >= 0) {
if (value[i] > max)

max = value[i];
if (value[i] < min)

min = value[i];
}

cursor.x = cursor.x + xstep;
cursor.y = cursor.y + ystep;
}

if (max == -1000000 && min == 1000000) {
max = 0;
min = 0;
}

cbRedraw();
}

}

Called when the close button is pressed. Closes the dialogs.
proc cbClose() {

tool.Managed = 0;
DialogClose(form);
if (setDefaultWhenClose) {

setDefaultWhenClose = false;
View.SetDefaultTool();
}

}

clear the drawing area
and redraw text

callback for drawing area
expose; draws text and graph

draw graph axes

draw labels for graph axes

draw profile

callback for when user clicks the right mouse
button on the line tool (or clicks apply)

get start and end point of tool line

get x and y step values

transform to map coordinates

loop on line to generate point list

if the raster value
was retrieved from a
null cell or a
coordinate outside
the raster extents,
value[i] will be ‘not a
number’; therefore
testing if it is < 0 or >=
0 determines whether
it is a valid value

