
Sample SML Tool Script

Area Statistics

MicroImages, Inc. +1 402 477 9554 • Support +1 402 477 9562 • www.microimages.com • info@microimages.com • October 2000

The Area Statistics Tool Script operates on the raster layer that is currently
active. In the example above the DEM raster layer is active, but the polygon
outlining the burned area is drawn on an overlying RGB raster layer that
shows a natural-color satellite image. The resulting statistics include the
minimum, maximum, and mean elevations for the burned area, which might
help establish replanting schedules. When you are displaying multiple raster
layers, remember to make the target raster the active layer before computing
the statistics for the polygon. Statistics can be computed for any type of
grayscale or binary raster, but not for RGB raster layers.

You can choose any icon (or design
your own) to launch the Tool Script
and provide text for its ToolTip.

The Area Statistics script is one example
of many possible applications you can
create using an SML Tool Script. This
sample script lets you draw a polygon
in the View window and get a listing of
computed raster statistics for the defined
area. The Tool Script, which is shown
on the other side of this page, automati-
cally provides the graphic tool for draw-
ing the polygon and the Region Statis-
tics window to list the results. You could
customize this script by adding other sta-
tistics computations. You can also use
it as a model for building your own script
that draws a polygon and uses it for some
operation on one or more layers. If you want to create your own Tool

Script, you don’t have to start com-
pletely from scratch. When you create
a new script you are provided with a
script “skeleton”: a series of com-
mented lines that include a number of
predefined functions that will be called
(if used in the script) when the appro-
priate tool action or event occurs (as
explained in the comments preceding
each function). To use a function,
uncomment the lines containing the
start and end of the function definition,
and add code in between to define what
you want the function to do.

Development of this and other sample Tool
Scripts continues at MicroImages. Check
the MicroImages web site for an updated
version incorporating additional features.

surface += .5*sqrt(sqr(yscale*downright*zscale-
yscale*right*zscale)+sqr(xscale*downright*zscale-
xscale*down*zscale)+sqr(xscale*yscale));

cells += 1;
}

CloseRaster(targetRaster);

if (count > 1) {
mean = sum / count;
stdDev = sqrt((sumsqr - sqr(sum) / count) / (count - 1));
area = MyRgn.$Data.GetArea();
perimeter = MyRgn.$Data.GetPerimeter();
centroid = MyRgn.$Data.GetCentroid();
}

cbRedraw();

StatusContextDestroy(context);
StatusDialogDestroy(status);
} # end of cbToolApply

}

func OnInitialize () {
form = CreateFormDialog(“Region Statistics”);
form.marginHeight = 2;
form.marginWidth = 2;
WidgetAddCallback(form.Shell.PopdownCallback, cbClose);

da = CreateDrawingArea(form, 173, 301);
da.topWidget = form;
da.leftWidget = form;
da.rightWidget = form;
WidgetAddCallback(da.ExposeCallback, cbRedraw);

line1 = CreateHorizontalSeparator(form);
line1.topWidget = da;
line1.leftWidget = form;
line1.rightWidget = form;
line1.bottomOffset = 2;

distMenu = CreateUnitOptionMenu(form, “distance_units_c”,cbDistUnits,
2, 0);

distMenu.topWidget = line1;
distMenu.leftWidget = form;

areaMenu = CreateUnitOptionMenu(form, “area_units_c”, cbAreaUnits,
1, 0);

areaMenu.topWidget = distMenu;
areaMenu.leftWidget = form;

line2 = CreateHorizontalSeparator(form);
line2.topWidget = areaMenu;
line2.leftWidget = form;
line2.rightWidget = form;
line2.topOffset = 2;

saveButton = CreatePushButtonItem(“Save As...”, cbSave);

closeButton = CreatePushButtonItem(“Close”, cbClose);

buttonRow = CreateButtonRow(form, saveButton, closeButton);
buttonRow.topWidget = line2;
buttonRow.leftWidget = form;
buttonRow.rightWidget = form;
buttonRow.bottomWidget = form;

tool = ViewCreatePolygonTool(View, “”, “”, “”);
ToolAddCallback(tool.ActivateCallback, cbToolApply);
} # end of OnInitialize

func OnDestroy () {
tool.Managed = 0;
DestroyGC(gc);
DestroyWidget(form);
} # end of OnDestroy

proc cbRedraw() {
local numeric larea, lperimeter, lsurface;

larea = areaScale * area;
lperimeter = distScale * perimeter;
lsurface = areaScale * surface;
if (gc == 0) return;
ActivateGC(gc);

SetColorName(“gray75”);
FillRect(0, 0, da.width, da.height);
SetColorName(“black”);
if (cells > 0) {DrawInterfaceText(sprintf(“Raster: %s\nCells:

%d\nNull Cells: %d\nMinimum: %.2f\nMaximum: %.2f\nMean:
%.2f\nStandard Deviation: %.2f\nArea: %.2f\nPerimeter:
%.2f\nCentroid: %.2f, %.2f\nSurface Area: %.2f”,
rasterName$, count, cells - count, min, max, mean, stdDev, larea,
lperimeter, centroid.x, centroid.y, lsurface), 0, 10);
}

else DrawInterfaceText(sprintf(“Raster: %s\nCells:\nNullCells:
\nMinimum:\nMaximum:\nMean:\nStandardDeviation:\nArea:\nPerimeter:
\nCentroid:\nSurface Area:”, rasterName$), 0, 10);

}

proc cbToolApply(class RegionTool tool) {
if (checkLayer()) {

local numeric sum, sumsqr, xscale, yscale, zscale;
local numeric current, right, down, downright;
local region MyRgn;
local class StatusHandle status;
local class StatusContext context;
cells = 0; min = 0; max = 0; mean = 0; stdDev = 0; sum = 0;
sumsqr = 0; count = 0; surface = 0; area = 0; perimeter = 0;
centroid.x = 0; centroid.y = 0; current = 0; right = 0; down = 0;
downright = 0;
xscale = ColScale(targetRaster);
yscale = LinScale(targetRaster);
zscale = Group.ActiveLayer.zscale;

MyRgn = tool.Region;
MyRgn = RegionTrans(MyRgn, ViewGetTransLayerToScreen(View,

rasterLayer, 1));
MyRgn = RegionTrans(MyRgn, ViewGetTransLayerToView(View,

rasterLayer));
MyRgn = RegionTrans(MyRgn, ViewGetTransMapToView(View,

rasterLayer.Projection, 1));

context = StatusContextCreate(status);
StatusSetMessage(context, “Computing values...”);

foreach targetRaster[lin, col] in MyRgn {
if (!IsNull(targetRaster)) {

if (count == 0) {
max = targetRaster;
min = targetRaster;
}

else if (targetRaster > max) {
max = targetRaster;
}

else if (targetRaster < min) {
min = targetRaster;
}

sum += targetRaster;
sumsqr += sqr(targetRaster);
count += 1;
}

if (!IsNull(targetRaster))
current = targetRaster;

if (!IsNull(targetRaster[lin,col+1]))
right = targetRaster[lin,col+1];

if (!IsNull(targetRaster[lin+1,col]))
down = targetRaster[lin+1,col];

if (!IsNull(targetRaster[lin+1,col+1]))
downright = targetRaster[lin+1,col+1];

surface += .5*sqrt(sqr(yscale*current*zscale-yscale*
right*zscale)+sqr(xscale*current*zscale-xscale*down*zscale)
+sqr(xscale*yscale));

Script for Area Statistics (regstats.sml)

MicroImages, Inc. +1 402 477 9554 • Support +1 402 477 9562 • www.microimages.com • info@microimages.com • October 2000

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options / Cus-
tomize from the View window menu bar). These scripts are then available from an icon, which you select or design, on
the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are available
only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full script is
printed below for your quick perusal. When a script is too long to fit on one page, key sections are reproduced below.
All sample Tool and Macro Scripts illustrated can be found in their entirety on your TNT products CD-ROM in the folder
in which you installed TNTmips 6.4. These scripts, among others, can be downloaded from the SML script exchange
at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.4_CD.

scales the values to specified units

estimates surface area by
adding areas of triangles
created by current cell and
cell below, cell to right,
and cell to lower right.

redraws Region Statistics
window when new
statistics are computed

main tool procedure, called
within OnInitialize function

creates status dialog

defines local variables for
statistics calculation

computes statistics
for the polygon

destroys the tool
when necessary

destroys the status dialog when
computations are complete

is called the first time
the tool is activated;
creates the graphic
tool and dialog

avoids division by zero
when computing mean
and standard deviation.

creates drawing area
for dialog window

creates separator between
statistics and menus

creates menu for selecting units

creates separator between
menus and buttons

creates
buttons

creates button row

creates standard
polygon drawing
tool

